Skip to main content
Log in

A novel approach to measuring fluid saturation using X-ray computed tomography

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Digital rock analysis using X-ray computer tomography (CT scan) is an ongoing topic for studying the porous media in geothermal, natural gas, and petroleum industries. This study provides a novel approach to calculating fluid saturation in low permeability cores utilizing X-ray computed tomography. In the present study, synthetic low permeability cores were used to analyze two-phase saturation at atmospheric pressure and temperature. In the experiments, no dopant was used for visualizing different phases. As a novelty of the paper, PHREEQC geochemical software was employed to verify the saturation of X-ray CT scanning through modeling the geochemical reaction between aqueous and gaseous phases. This study presents a novel and reliable approach to verify the saturation of X-ray CT scan through geochemical modeling. The results of this study also prove that using the saturation of mass balance as the initial condition of the geochemical modeling leads to an excellent agreement between the saturation of CT scan and geochemical modeling. According to the results obtained, there is a 24% difference between gas saturation in CT scan and mass balance method, while such discrepancy is only 13% between gas saturation in CT scan and geochemical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTi :

CT number of the ith material

GSi :

grayscale value of the ith material

K:

equilibrium constant

m:

solubility of the gas [mole/lit]

P:

partial pressure of the gas [atm]

R:

normalized radius of the core [r/rcore]

Sg :

saturation of the gas phase

Sw :

saturation of the water phase

γ :

activity coefficient in the aqueous phase

φ :

porosity of the medium

References

  1. N. Kampman, M. Bickle, M. Wigley and B. Dubacq, Chem. Geol., 369, 22 (2014).

    Article  CAS  Google Scholar 

  2. G. De Josselin de Jong, Eos, Trans. Am. Geophys. Union, 39(1), 67 (1958).

    Article  Google Scholar 

  3. Z. Liu and S. M. Moysey, ISRN Geophys., 2012 (2012).

  4. M. J. Beran, Summary of dispersion of soluble matter in slowly moving fluids, Harvard University (1955).

  5. G. Round, Nature, 188(4747), 305 (1960).

    Article  Google Scholar 

  6. E. Deutsch, Nature, 185(4714), 675 (1960).

    Article  Google Scholar 

  7. A. Laird and J. Putnam, J. Pet. Technol., 3(10), 275 (1951).

    Article  Google Scholar 

  8. E. Chavez Panduro, M. Torsæter, K. Gawel, R. Bjørge, A. Gibaud, Y. Yang, S. Bruns, Y. Zheng, H. Sørensen and D. Breiby, Environ. Sci. Technol., 51(16), 9344 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. A. M. Alhammadi, Y. Gao, T. Akai, M. J. Blunt and B. Bijeljic, Fuel, 268, 117018 (2020).

    Article  CAS  Google Scholar 

  10. Y. Yang, L. Tao, S. Iglauer, S. H. Hejazi, J. Yao, W Zhang and K. Zhang, Energy Fuels, 34(9), 10762 (2020).

    Article  CAS  Google Scholar 

  11. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.-Y. Buffiere, W. Ludwig, E. Boller, D. Bellet and C. Josserond, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 200, 273 (2003).

    Article  CAS  Google Scholar 

  12. E. Maire and P. J. Withers, Int. Mater. Rev., 59(1), 1 (2014).

    Article  CAS  Google Scholar 

  13. A. Du Plessis, B. J. Olawuyi, W P. Boshoff and S. G. Le Roux, Mater. Struct., 49(1–2), 553 (2016).

    Article  Google Scholar 

  14. H. Menke, C. Reynolds, M. Andrew, J. P. Nunes, B. Bijeljic and M. Blunt, Chem. Geol., 481, 27 (2018).

    Article  CAS  Google Scholar 

  15. A. Shabani, M. B. Shahparast and F. Barzegar, Energy Sources Part A-Recovery Util. Environ. Eff., 1 (2020).

  16. S. Akin and A. Kovscek, Geological Soc. Publications, 215(1), 23 (2003).

    Article  Google Scholar 

  17. F. Wang, Y. Li, X. Tang, J. Chen and W Gao, J. Nat. Gas Sci. Eng., 28, 215 (2016).

    Article  CAS  Google Scholar 

  18. P. J. HicksJr, R. Narayanan and H. A. Deans, SPE Form. Eval., 9(01), 55 (1994).

    Article  Google Scholar 

  19. A. Brancolini, I. Mackenziei, F. Radaelli and F. Rossi, X-ray CT evaluation of poorly consolidated, thin-bedded core. SPWLA 36th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts (1995).

  20. C. Durand, Combined use of X-ray CT scan and local resistivity measurements: A new approach to fluid distribution description in cores, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2003).

  21. P. Olivier, L. Cantegrel-Gassiot, J. Laveissiere and N. Guillonneau, Petrophysics, 46(06) (2005).

  22. A. J. Alshehri and A. R. Kovscek, An X-ray CT study of multidimensional imbibition in dual porosity carbonates, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2012).

  23. H. Kusanagi, N. Watanabe, T. Shimazu, M. Yagi, T. Komai and N. Tsuchiya, X-ray CT based numerical analysis for fluid flows through vuggy carbonate cores, 20th Formation Evaluation Symposium of Japan, Society of Petrophysicists and Well-Log Analysts (2014).

  24. L. Moghadasi, A. Guadagnini, F. Inzoli, M. Bartosek and D. Renna, J. Pet. Sci. Eng., 145, 453 (2016).

    Article  CAS  Google Scholar 

  25. A. Alhosani, A. Scanziani, Q. Lin, Z. Pan, B. Bijeljic and M. J. Blunt, Adv. Water Resour., 134, 103432 (2019).

    Article  CAS  Google Scholar 

  26. L. Weifeng, L. Qingjie, Z. Zhang, M. Desheng, W. Kangyun and L. Zhenpeng, Pet. Explor. Dev., 39(6), 758 (2012).

    Article  Google Scholar 

  27. K. Alshibli and Z. A. Jarrar, Geotechnical Testing J., 44(4) (2020).

  28. N. K. Jha, M. Lebedev, S. Iglauer, M. Ali, H. Roshan, A. Barifcani, J. S. Sangwai and M. Sarmadivaleh, J. Colloid Interface Sci., 562, 370 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. D. L. Parkhurst and C. Appelo, Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, US Geological Survey (2013).

  30. D. L. Parkhurst and C. Appelo, USER’S GUIDE TO PHREEQC (VERSION 2) (Equations on which the program is based), Technical report, US Geological Survey (1999).

  31. Y. Zou, C. Zheng and S. Sheikhi, Chem. Geol., 559, 119992 (2020).

    Article  Google Scholar 

  32. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15(1), 59 (1976).

    Article  CAS  Google Scholar 

  33. M. Van Geet, R. Swennen and M. Wevers, Sedimentary Geol., 132(1–2), 25 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhan Sheikhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi, S., Burukhin, A. & Cheremisin, A. A novel approach to measuring fluid saturation using X-ray computed tomography. Korean J. Chem. Eng. 40, 2708–2715 (2023). https://doi.org/10.1007/s11814-023-1509-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1509-9

Keywords

Navigation