Skip to main content
Log in

Thermotropic liquid crystalline 4-(Nonyloxy) benzoic acid: Phase transition temperatures, thermodynamic characterization, and separation of structural isomers

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The retention behavior of various organic probes on the 4-(Nonyloxy) benzoic acid liquid crystal, which is used as a stationary phase, was investigated using the inverse gas chromatography method at infinite dilution. The thermodynamic parameters including the Flory-Huggins parameter, equation-of-state interaction parameter, the mole fraction activity coefficient, the effective exchange energy parameter, and residual thermodynamic parameters were determined in the temperature range of 423.15-433.15 K by using the retention behavior of the probes on the liquid crystal. It was determined from the thermodynamic parameters that all probes were poor solvents for the liquid crystal. Besides, the results of the 4-(Nonyloxy) benzoic acid liquid crystal was compared with a liquid crystal in the literature, and the effect of the number of alkyl groups on the liquid crystals on the Flory-Huggins interaction parameter and isomer separation was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. An, S. Hina, Y. Yang, M. Xue and Y. Liu, Rev. Adv. Mater. Sci., 44, 398 (2016).

    Google Scholar 

  2. F. P. Caglar, H. Akdas-Kilic, H. Ocak and B. B. Eran, J. Mol. Struct., 1220, 128755 (2020).

    Article  CAS  Google Scholar 

  3. M. Sargazi, M. R. Linford and M. Kaykhaii, Crit. Rev. Anal. Chem., 49, 243 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. D. Andrienko, J. Mol. Liq., 267, 520 (2018).

    Article  CAS  Google Scholar 

  5. S. Kumar, R. Verma, A. Dwivedi, R. Dhar and A. Tripathi, AIP Conf. Proc., 1953, 050014 (2018).

    Article  Google Scholar 

  6. D. Sunil, A. A. A. Salam, R. K. Sinha, L. D. Rodrigues, K. Swamynathan and P. Bhagavath, J. Mol. Liq., 335, 116202 (2021).

    Article  CAS  Google Scholar 

  7. S. Kumar, R. Verma, R. Dhar and A. Tripathi. Liq. Cryst., 46, 356 (2019).

    Article  CAS  Google Scholar 

  8. J. F. Gamble, R. N. Davé S. Kiang, M. M. Leane, M. Tobyn and S. S. Y Wang, Int. J. Pharm., 445, 39 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. W Wang, Q. Wang, J. Tang, Q. Wang and B. Wang, J. Chem. Thermodyn., 150, 106236 (2020).

    Article  CAS  Google Scholar 

  10. V Ugraskan, B. Isik, O. Yazici and F. Cakar, J. Chem. Eng. Data, 65, 1795 (2020).

    Article  CAS  Google Scholar 

  11. E. Diaz, S. Ordonez, A. Vega and J. Coca, Thermochim. Acta, 434, 9 (2005).

    Article  CAS  Google Scholar 

  12. T. V.M. Sreekanth, S. Ramanaiah, P. Reddi Rani and K.S. Reddy, Polym. Bull., 63, 547 (2009).

    Article  CAS  Google Scholar 

  13. M. Romansky and J. E. Guillet, Polymer, 35, 584 (1994).

    Article  CAS  Google Scholar 

  14. O. Yazici, Chromatographia, 79, 355 (2016).

    Article  CAS  Google Scholar 

  15. P. Wu, S. Qi, N. Liu, K. Deng and H. Nie, J. Elastom. Plast., 43, 369 (2011).

    Article  CAS  Google Scholar 

  16. G. S. Dritsas, K. Karatasos and C. Panayiotou, J. Chromatogr. A, 1216, 8979 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. F. Mutelet and J. N. Jaubert, J. Chromatogr. A, 1102, 256 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. C. L. Young, Chromatogr. Rev., 10, 129 (1968).

    Article  CAS  PubMed  Google Scholar 

  19. A.J.B. Cruickshank, M.L. Windsor and C.L. Young, Proc. Royal Soc. A Math. Phys. Eng. Sci., 295, 271 (1966).

    CAS  Google Scholar 

  20. J. R. Conder and J. H. Purnell, Trans. Faraday Soc., 64, 1505 (1968).

    Article  CAS  Google Scholar 

  21. Z. Witkiewicz J. Chromatogr. A, 466, 37 (1989).

    Article  CAS  Google Scholar 

  22. Z. Witkiewicz, J. Szulc and R. Dábrowski, J. Chromatogr. A, 315, 145 (1984).

    Article  CAS  Google Scholar 

  23. E. Ghanem and S. Al-Hariri, Chromatographia, 77, 653 (2014).

    Article  CAS  Google Scholar 

  24. A.E. Cakar, F. Cakar, H. Ocak, S. Karavelioglu, B.B. Eran and O. Cankurtaran, J. Mol. Struct., 1265, 133379 (2022).

    Article  CAS  Google Scholar 

  25. I. Erol, F. Cakar, H. Ocak, H. Cankurtaran, O. Cankurtaran, B. Bilgin-Eran and F. Karaman, Liq. Cryst., 43, 142 (2016).

    Article  CAS  Google Scholar 

  26. O. Cankurtaran and F. Yilmaz, Polymer, 37, 3019 (1996).

    Article  CAS  Google Scholar 

  27. M. Tejaswi, P. Pardhasaradhi, B.T.P. Madhav, M.C. Rao, D.R.S. Reddy, G. Giridhar and R. K. N. R. Manepalli, Optik, 219, 165151 (2020).

    Article  CAS  Google Scholar 

  28. A.J. Herbert, Trans. Faraday Soc., 63, 555 (1967).

    Article  CAS  Google Scholar 

  29. M. K. Kozlowska, U. Domanska, M. Lempert and M. Rogalski, J Chromatogr. A, 1068, 297 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. J. Camacho, E. Diez, G. Ovejero and I. Diaz, J. Appl. Polym. Sci., 128, 481 (2013).

    Article  CAS  Google Scholar 

  31. I. Gutierrez, E. Diaz, A. Vega, S. Ordonez, A. Guerrero-Ruiz, E. Cas-tillejos-López and I. Rodriguez-Ramos, Thermochim. Acta, 602, 36 (2015).

    Article  CAS  Google Scholar 

  32. N. Karakehya and C. Bilgic, Inf. J. Adhes. Adhes., 51, 140 (2014).

    Article  CAS  Google Scholar 

  33. S. Sun and J. C. Berg, Adv. Colloid Interface Sci., 105, 151 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. A. Voelkel, B. Strzemiecka, K. Milczewska and Z. Okulus, Open Chem., 13, 893 (2015).

    Article  Google Scholar 

  35. A. L. Revelli, F. Mutelet, J. N. Jaubert, M. Garcia-Martinez, L. M. Sprunger, W. E. Acree and G. A. Baker, J. Chem. Eng. Data, 55, 2434 (2010).

    Article  CAS  Google Scholar 

  36. A. C. Adiguzel, B. Korkmaz, F. Cakar, O. Cankurtaran and B. F. Senkal, Fluid Phase Equilib., 559, 113467 (2022).

    Article  CAS  Google Scholar 

  37. D. G. Gray, Prog. Polym. Sci., 5, 1 (1977).

    Article  CAS  Google Scholar 

  38. T. E. Daubert, Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Publication Corporation, New York (1989).

    Google Scholar 

  39. A.F.M. Barton, Chem. Rev., 75, 731 (1975).

    Article  CAS  Google Scholar 

  40. J. Klein and H. E. Jeberien, Die Makromal. Chem., 181, 1237 (1980).

    Article  CAS  Google Scholar 

  41. C. P. Callaway, K. Hendrickson, N. Bond, S. M. Lee, P. Sood and S. S. Jang, ChemPhysChem, 19, 1655 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. B. Isik, F. Cakar, H. Cankurtaran and O. Cankurtaran, Instrum. Sci. Technol., 50, 1 (2022).

    Article  CAS  Google Scholar 

  43. K. Schotsch and B. A. Wolf, Die Makromol Chem., 185, 2169 (1984).

    Article  CAS  Google Scholar 

  44. F. Cakar and O. Cankurtaran, Polym. Bull., 55, 95 (2005).

    Article  CAS  Google Scholar 

  45. B. Isik, F. Cakar and O. Cankurtaran, Sep. Sci. Technol., 57, 2843 (2022).

    Article  CAS  Google Scholar 

  46. D. H. Everett Tram. Faraday Soc., 61, 1637 (1965).

    Article  CAS  Google Scholar 

  47. A. J. B. Cruickshank, B. W Gainey, C. P. Hicks, T. M. Letcher, R. W Moody and C. L. Young, Trans. Faraday Soc., 65, 1014 (1969).

    Article  CAS  Google Scholar 

  48. J. E. Guillet, M. Romansky, G. J. Price and R. V. D. Mark, Inverse gas chromatography, characterization of polymers and other materials, American Chemical Society (1989).

  49. Y. Yampolskii and N. Belov, Macromolecules, 48, 6751 (2015).

    Article  CAS  Google Scholar 

  50. S. Mutlu Yanic, F. Cakar, H. Ocak, F. Karaman, O. Cankurtaran and B. Bilgin Eran, J. Chem. Eng. Data, 64, 1007 (2019).

    Article  CAS  Google Scholar 

  51. M. Królikowski, M. Królikowska, M. Wieckowski and A. Pitowski, J. Chem. Therm., 147, 106117 (2020).

    Article  Google Scholar 

  52. U. Domanska, M. Karpinska and M. Wlazto, J. Chem. Therm., 121, 112 (2018).

    Article  CAS  Google Scholar 

  53. O. Cankurtaran and F. Yilmaz, Polym. Int., 41, 307 (1996).

    Article  CAS  Google Scholar 

  54. D. W Katja, Theory of gas chromatography, Springer-Verlag (2014).

Download references

Acknowledgements

This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department. Project number: FDK-2020-4071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Cankurtaran.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2023_1508_MOESM1_ESM.pdf

Thermotropic liquid crystalline 4-(Nonyloxy) benzoic acid: Phase transition temperatures, thermodynamic characterization, and separation of structural isomers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, B., Cakar, F., Cankurtaran, H. et al. Thermotropic liquid crystalline 4-(Nonyloxy) benzoic acid: Phase transition temperatures, thermodynamic characterization, and separation of structural isomers. Korean J. Chem. Eng. 40, 2724–2734 (2023). https://doi.org/10.1007/s11814-023-1508-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1508-x

Keywords

Navigation