Skip to main content

Advertisement

Log in

The use of acetylation to improve the performance of hyaluronic acid-based dermal filler

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Injectable dermal fillers, which are used for various plastic surgery purposes, are experiencing explosive market growth due to increasing interest in appearance management. Hyaluronic acid (HA) hydrogels have been considered an ideal material for fillers due to their high-water retention, biodegradability, and biocompatibility. However, their application is limited by shortcomings in durability and persistence caused by rapid enzymatic degradation. Therefore, in this study, we introduce acetylated hyaluronic acid-divinyl sulfone (AcHA-DVS) hydrogels for a novel approach for improving the physical properties and gel retention time of HA. The AcHA-DVS hydrogels showed significant advantages in terms of longevity and performance as dermal fillers compared to HA-DVS hydrogels. These results suggest that our new AcHA-DVS hydrogel is a promising biomaterial as an injectable filler or scaffold for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

For data requests, please contact the authors.

Abbreviations

AcHA-DVS:

acetylated hyaluronic acid-divinyl sulfone

HA:

hyaluronic acid

DVS:

divinyl sulfone

MTT:

3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide

Wd :

dry mass weight

Ws :

swelling mass weight

ESR:

equilibrium swelling ratio

DMSO:

dimethylsulfoxide

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

fetal bovine serum

P/S:

penicillin-streptomycin

Calcein-AM:

calcein acetoxymethyl ester

FE-SEM:

field emission scanning electron microscope

References

  1. K. P. Redbord, M. Busso and C. W. Hanke, Dermatol. Ther., 24, 71 (2011).

    Article  PubMed  Google Scholar 

  2. J. A. Burdick and G. D. Prestwich, Adv. Mater., 23, H41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Khunmanee, Y. Jeong and H. Park, J. Tissue Eng., 8, 2041731417726464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. X. Wang, J. He, Y. Wang and F. Z. Cui, Interface Focus, 2, 278 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. X. Xu, A. K. Jha, D. A. Harrington, M. C. Farach-Carson and X. Jia, Soft Matter, 8, 3280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Chircov, A. M. Grumezescu and L. E. Bejenaru, Rom. J. Morphol. Embryol., 59, 71 (2018).

    PubMed  Google Scholar 

  7. K. Y. Choi, K. H. Min, J. H. Na, K. Choi, K. Kim, J. H. Park, I. C. Kwon and S. Y. Jeong, J. Mater. Chem., 19, 4102 (2009).

    Article  CAS  Google Scholar 

  8. S. P. Zhong, D. Campoccia, P. J. Doherty, R. L. Williams, L. Benedetti and D. F. Williams, Biomaterials, 15, 359 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. S. C. Choi, M. A. Yoo, S. Y. Lee, H. J. Lee, D. H. Son, J. Jung, I. Noh and C. W. Kim, J. Biomed. Mater. Res. Part A, 103, 3072 (2015).

    Article  CAS  Google Scholar 

  10. S. Manchun, C. R. Dass, K. Cheewatanakornkool and P. Sriamornsak, Carbohydr. Polym., 126, 222 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. B. B. Mendes, A. C. Daly, R.L. Reis, R. M. A. Domingues, M. E. Gomes and J. A. Burdick, Acta Biomater., 119, 101 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. S. P. Fundaro, G. Salti, D. M. H. Malgapo and S. Innocenti, Int. J. Mol. Sci., 23, 10518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. E. J. Lee, E. Kang, S. W. Kang and K. M. Huh, Carbohydr. Polym., 244, 116432 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. R. Langer and J. P. Vacanti, Science, 260, 920 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. D. S. Kohane and R. Langer, Pediatr. Res., 63, 487 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. R. Song, M. Murphy, C. Li, K. Ting, C. Soo and Z. Zheng, Drug Des. Dev. Ther., 12, 3117 (2018).

    Article  CAS  Google Scholar 

  17. K. Bergman, C. Elvingson, J. Hilborn, G. Svensk and T. Bowden, Biomacromolecules, 8, 2190 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. J. Kablik, G. D. Monheit, L. Yu, G. Chang and J. Gershkovich, Dermatol. Surg., 35, 302 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. S. R. Smith, D. Jones, J. A. Thomas, D. K. Murphy and F. C. Beddingfield,3rd, Arch. Dermatol. Res., 302, 757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. N. Lin, S. Wei, T. Xia, F. Hu, J. Huang and A. Dufresne, RSC Adv., 4, 49098 (2014).

    Article  CAS  Google Scholar 

  21. I. Dueramae, M. Yoneyama, N. Shinyashiki, S. Yagihara and R. Kita, Int. J. HeatMass Transf., 132, 997 (2019).

    Article  CAS  Google Scholar 

  22. S. J. Kim, K. J. Lee and S. I. Kim, J. Appl. Polym. Sci., 92, 1473 (2004).

    Article  CAS  Google Scholar 

  23. J. Zhu and R. E. Marchant, Expert Rev. Med. Devices, 8, 607 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. T. Walimbe, S. Calve, A. Panitch and M. P. Sivasankar, Acta Biomater., 87, 97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. V. Cannella, R. Altomare, V. Leonardi, L. Russotto, S. Di Bella, F. Mira and A. Guercio, Biomed Res. Int., 2020, 8676343 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. E. J. Oh, S. W. Kang, B. S. Kim, G. Jiang, I. H. Cho and S. K. Hahn, J. Biomed. Mater. Res. Part A, 86, 685 (2008).

    Article  Google Scholar 

  27. C. Somaiah, A. Kumar, D. Mawrie, A. Sharma, S. D. Patil, J. Bhattacharyya, R. Swaminathan and B. G. Jaganathan, PLoS One, 10, e0145068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program (NRF-2020R1A2C2100794, NRF-2022R1A2C1010161) of the National Research Foundation (NRF) and Korean Fund for Regenerative Medicine (KFRM) grant (22A0104L1) funded by the Korea government.

Author information

Authors and Affiliations

Authors

Contributions

E. J. Lee analyzed the characteristics of HA hydrogels. K. H. Park performed cell culture for the cytotoxicity test of the hydrogels. S.-J. Gwak and Y. B. Lee are the major contributors to writing the manuscript. K. M. Huh and S.-W. Kang supervised the study. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Sun-Woong Kang or Kang Moo Huh.

Additional information

Consent for Publication

All authors have consented to the submission of this manuscript for publication.

Competing Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwak, SJ., Lee, Y.B., Lee, E.J. et al. The use of acetylation to improve the performance of hyaluronic acid-based dermal filler. Korean J. Chem. Eng. 40, 1963–1969 (2023). https://doi.org/10.1007/s11814-023-1496-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1496-x

Keywords

Navigation