Skip to main content
Log in

ZIF-8 derived porous carbon/ZnO as an effective nanocomposite adsorbent for removal of acetic acid

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A porous carbon/zinc oxide nanocomposite adsorbent was prepared by carbonization/oxidation of ZIF8 metal-organic framework (MOF) and then used to investigate the adsorption of acetic acid from water. Preliminary tests revealed that the adsorbent composed of 25% porous carbon/zinc oxide and 75% zeolite could result in superior acetic acid removal. Response surface methodology and central composite design algorithm (CCD) were used to optimize the operating variables affecting the acid removal. The optimal conditions were obtained at the initial acid concentration of 257.5 mg/L, the adsorbent amount of 152.5 mg, the contact time of 32.5 min and the sample volume of 28.75 mL. In the optimal conditions, an adsorption capacity equal to 106 mg/g was obtained. The experimental equilibrium adsorption was well-described by the Langmuir isotherm model, reflecting the monolayer chemisorption of the acid on the active sites. In addition, adsorption on the developed adsorbent followed the pseudo-second-order kinetics, and according to the thermodynamic study results, the adsorption was exothermic and spontaneous. In conclusion, the adsorption capacity of the porous carbon/zinc oxide-zeolite composite was fair, while its removal rate was extremely higher compared to that of the similar adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. Zhang, M. Sun, R. Yang, X. Li, L. Zhang and M. Li, Ecol. Indic., 122, 107314 (2021).

    Article  Google Scholar 

  2. P. Saremi, IJAEB, 5, 252 (2020).

    Google Scholar 

  3. L. Liang, F. Xi, W. Tan, X. Meng, B. Hu and X. Wang, BCR, 3, 3 (2021).

    Google Scholar 

  4. Z. Aksu, Process Biochem., 40, 3 (2005).

    Google Scholar 

  5. S. Kumar and B. Babu, Separation of carboxylic acids from waste water via reactive extraction, International Convention on Water Resources Development and Management (ICWRDM), Pilani, India, Citeseer (2008).

  6. V. Gandhi, M. Mishra and P. A. Joshi, Mater. Sci. Forum, 712, 175 (2012).

    Article  CAS  Google Scholar 

  7. F. A. Adekola and I. A. Oba, Appl. Water Sci., 7, 6 (2017).

    Article  Google Scholar 

  8. M. Jain, A. Majumder, P. S. Ghosal and A. K. Gupta, J. Environ. Manage., 272, 111057 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. K. D. Patil and B. D. Kulkarni, J. Water Pollut. Purif. Res., 1, 2 (2014).

    Google Scholar 

  10. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak and S. Agarwal, Rsc Adv., 2, 16 (2012).

    Article  Google Scholar 

  11. F. E. Titchou, H. Zazou, H. Afanga, J. El Gaayda, R. A. Akbour, P. V. Nidheesh and M. Hamdani, Chem. Eng. Process, 169, 108631 (2021).

    Article  CAS  Google Scholar 

  12. H. Tian, Y. Wang, Y. Pei and J. C. Crittenden, Appl. Energy, 262, 114482 (2020).

    Article  CAS  Google Scholar 

  13. M. Minella, V. Maurino, C. Minero and D. Vione, Int. J. Environ. Anal. Chem., 93, 15 (2013).

    Article  Google Scholar 

  14. M. N. Rashed, Organic Pollutants-Monitoring, Risk and Treatment, Intech, 7 (2013).

  15. E. L. Foletto, W. R. B. D. Santos, S. L. Jahn, M. M. Bassaco, M. A. Mazutti, A. Cancelier and A. Gündel, Desalin. Water Treat., 51, 13 (2013).

    Article  Google Scholar 

  16. F. S. Freyria, M. Armandi, M. Compagnoni, G. Ramis, I. Rossetti and B. Bonelli, J. Nanosci. Nanotechnol., 17, 6 (2017).

    Article  Google Scholar 

  17. V. Wankhade Atul, G. Gaikwad, M. Dhonde, N. Khaty and S. Thakare, Res. J. Chem. Environ., 17, 84 (2013).

    Google Scholar 

  18. W. Zhao, M. Adeel, P. Zhang, P. Zhou, L. Huang, Y. Zhao, M.A. Ahmad, N. Shakoor, B. Lou and Y. Jiang, Environ. Sci. Nano, 9, 1 (2022).

    Article  Google Scholar 

  19. B. M. Travália and M. B. Soares Forte, J. Chem. Eng. Data, 65, 9 (2020).

    Article  Google Scholar 

  20. G. Narin and J. Turk. Chem. Soc. Sect. B: Chem. Eng., 1, 2 (2017).

    Google Scholar 

  21. O. Gamba, H. Noei, J. I. Pavelec, R. Bliem, M. Schmid, U. Diebold, A. Stierle and G. S. Parkinson, J. Phys. Chem. C, 119, 35 (2015).

    Google Scholar 

  22. H. N. Abdelhamid, D. Georgouvelas, U. Edlund and A. P. Mathew, J. Chem. Eng., 446, 136614 (2022).

    Article  CAS  Google Scholar 

  23. A. I. Soliman, A.-M. A. Abdel-Wahab and H. N. Abdelhamid, RSC Adv., 12, 12 (2022).

    Google Scholar 

  24. H. N. Abdelhamid, S.A. Al Kiey and W. Sharmoukh, Appl. Organomet. Chem., 36, 1 (2022).

    Google Scholar 

  25. M. He, J. Yao, Q. Liu, K. Wang, F. Chen and H. Wang, Micropor. Mesopor. Mater., 184, 55 (2014).

    Article  CAS  Google Scholar 

  26. S.-L. Jian, Y.-J. Huang, M.-H. Yeh and K.-C. Ho, J. Mater. Chem. A, 6, 12 (2018).

    Article  Google Scholar 

  27. L. Wang, X. Zhu, Y. Guan, J. Zhang, F. Ai, W. Zhang, Y. Xiang, S. Vijayan, G. Li and Y. Huang, Energy Storage Mater., 11, 2104 (2018).

    Google Scholar 

  28. H. Zhang, X. Lan, P. Bai and X. Guo, Chem. Eng. Res. Des., 111, 127 (2016).

    Article  CAS  Google Scholar 

  29. H. Zhang, Y. Wang, P. Bai, X. Guo and X. Ni, J. Chem. Eng. Data, 61, 1 (2016).

    Article  Google Scholar 

  30. N. Kannan and A. Xavier, Toxicol. Environ. Chem., 79, 1 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation for the support of Arak University during completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Salehi.

Ethics declarations

The authors deny any financial and personal conflict of interest that could have affected the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amidi, M., Salehi, E. ZIF-8 derived porous carbon/ZnO as an effective nanocomposite adsorbent for removal of acetic acid. Korean J. Chem. Eng. 40, 2384–2395 (2023). https://doi.org/10.1007/s11814-023-1492-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1492-1

Keywords

Navigation