Skip to main content
Log in

Experimental strategy for acid-free plutonium recovery from assorted matrices: Non-aqueous leaching followed by selective solid phase extraction

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Methodologies comprising usage of innocuous reagents, lower overall chemical inventory and simplification of process scheme for plutonium recovery from assorted matrices, solid as well as liquid, are key to establishing sustainability of the nuclear fuel cycle. The present study demonstrates, for the first-time, plutonium leaching from different refractory matrices: oxide, mixed oxide as well as simulated cellulosic waste using the benign halide anion free choline citrate - urea (1 : 2 mole ratio) based eutectic solvent (referred to as CU). This mineral acid and hydrofluoric acid-free, non-aqueous route of plutonium recovery with controlled infra-red heating yielded ≥93% efficiency. CU was diluted with biodegradable, less viscous propylene glycol (referred to as PG), which was chosen as the non-aqueous polar phase for facile solid phase extraction (SPE), which is a green alternative to liquid-liquid extraction owing to process simplification and solvent inventory reduction. Exclusive stabilization of tetravalent plutonium in the novel media, confirmed by ultraviolet-visible spectrophotometry and electrochemical methods, led to process simplification, eliminating any pre-extraction requirement for oxidation state adjustment. Extractant, di-2-ethyl hexyl phosphoric acid encapsulated polyether sulfone beads, prepared by phase inversion method, were employed for efficient SPE of plutonium (Distribution co-efficient, kD=950±6). Selectivity of non-aqueous SPE was found to be Pu(IV)≫UO 2+2 >Am(III) vis-à-vis aqueous acid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. S. Bourg, N. Ouvrier, N. Combernoux, C. Rostaing and J. Bruno, Energy, 69, 199 (2014).

    Article  Google Scholar 

  2. H. N. Sethna, India’s atomic energy programme: Past and future, IAEA Bulletin (2021).

  3. H. S. Kamath, Energy Procedia, 7, 110 (2011).

    Article  Google Scholar 

  4. Chemical characterization of Nuclear Fuels. IANCAS Bulletin VII, 3 (2008).

  5. C. Musikas, W. Schulz, in Principles and practices of solvent extraction, J. Rydberg, C. Musikas, G. R. Choppin Eds., Marcel Dekker Publications, New York, 413 (1992).

    Google Scholar 

  6. J. L. Ryan and E. J. Wheelwright, Ind. Eng. Chem. Res., 51, 60 (1959).

    Article  CAS  Google Scholar 

  7. K. Binnemans and P. T. Jones, J. Sustain. Metall., 3, 570 (2017).

    Article  Google Scholar 

  8. N. K. Batchu, T. V. Hoogerstraete, D. Banerjee and K. Binnemans, RSC Adv., 7, 45351 (2017).

    Article  CAS  Google Scholar 

  9. B. Dewulf, N. K. Batchu and K. Binnemans, ACS Sustain. Chem. Eng., 8, 19032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. K. Batchu, L. Zheng and K. Binnemans, Sep. Purif. Technol., 255, 117711 (2021).

    Article  CAS  Google Scholar 

  11. Z. Li, B. Dewulf and K. Binnemans, Ind. Eng. Chem. Res., 60, 17285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Usuda, Studies on Rapid Ion-Exchange Separation of The Transplutonium Elements with Mineral Acid-Methanol Mixed Media, JAERI March 1315 (1989).

  13. A. A. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 19, 2010 (2001).

    Article  Google Scholar 

  14. C. J. Clarke, W. C. Tu, O. Levers, A. Bröhl and J. P. Hallett, Chem. Rev., 118, 747 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. G. Zante and M. Boltoeva, Sustain. Chem., 1, 238 (2020).

    Article  Google Scholar 

  16. Y. Ohashi, N. Asanuma, M. Harada, Y. Tanaka and Y. Ikeda, J. Radioanal. Nucl. Chem., 309, 627 (2016).

    CAS  Google Scholar 

  17. S. Riano, M. Petranikova, B. Onghena, T. V. Hoogerstraete, D. Banerjee, M. R. S. J. Foreman, C. Ekberg and K. Binnemans, RSC Adv., 7, 32100 (2017).

    Article  CAS  Google Scholar 

  18. R. Gupta, J. Gamare, S. K. Gupta and S. S. Kumar, J. Mol. Struct., 1215, 128266 (2020).

    Article  CAS  Google Scholar 

  19. A. Rao and A. Srivastava, Sep. Purif. Technol., 257, 117950 (2021).

    Article  CAS  Google Scholar 

  20. A. Srivastava, R. M. Rao Dumpala, P. Sahu, A. K. Yadav, N. Rawat, S.K. Musharaf Ali, M. Sahu, N. Pathak and A. Sengupta, ACS Sust. Chem. Eng., 9, 7846 (2021).

    Article  CAS  Google Scholar 

  21. R. West, M. Banton, J. Hu and H. Klapacz, Rev. Environ. Contam. Toxicol., 232, 107 (2014).

    CAS  PubMed  Google Scholar 

  22. S. S. Kumar, A. Rao, K. K. Yadav, R. K. Lenka, D. K. Singh and B. S. Tomar, J. Radioanal. Nucl. Chem., 324, 375 (2020).

    Article  CAS  Google Scholar 

  23. J. L. Drummond and R. A. Grant, Talanta, 13, 477 (1966).

    Article  CAS  PubMed  Google Scholar 

  24. K. K. Yadav, D. K. Singh, M. Anitha, L. Varshaney and H. Singh, Sep. Purif. Technol., 118, 350 (2013).

    Article  CAS  Google Scholar 

  25. K. K. Yadav, K. Dasgupta, D. K. Singh, L. Varshaney and H. Singh, J. Chromatogr. A, 1384, 37 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. K. Chander, B. N. Patil, J. V. Kamat, N. B. Khedekar, R. B. Manolkar and S. G. Marathe, Nucl. Technol., 78, 69 (1987).

    Article  CAS  Google Scholar 

  27. M. Marchel, H. Cieśliński and G. Boczkaj, Ind. Eng. Chem. Res., 61(30), 11288 (2022).

    Article  CAS  Google Scholar 

  28. D. L. Clark, S. S. Hecker, G. D. Jarvinen and M. P. Neu, Plutonium, chapter 7, 813, in The chemistry of the actinide and transactinide element, L. R. Morss, N. M. Edelstein, J. Fuger Eds., Springer Publications (2010).

  29. A. J. Francis, J. D. Cleveland and J. B. Gillow, Radiochim. Acta, 94, 731 (2005).

    Article  Google Scholar 

  30. A. Ikeda, C. Hennig, S. Tsushima, K. Takao, Y. Ikeda, A. C. Scheinost and G. Bernhard, Inorg. Chem., 46, 4212 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. A. Warshawsky, Trans. Inst. Mining Metall. C., 83, 101 (1974).

    Google Scholar 

  32. X. C. Gong, G. S. Luo, W. W. Yang and F. Y. Wu, Sep. Purif. Technol., 48, 235 (2006).

    Article  CAS  Google Scholar 

  33. W. W. Schulz, D2EHPA Extraction recovery: Chemistry of neptunium and Plutonium from Purex process sludge, Pacific Noth West Laboratory, Richland, Washington, BNWL 583 (1968).

    Google Scholar 

  34. C. Sella, A. Becis, G. Cote and D. Bauer, Solv. Extr. Ion Exch., 13(4), 715 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SSK, AR and AS are grateful to Dr. P.K. Mohapatra, Head, RCD and Dr. Neetika Rawat, RCD for their support and encouragement during the course of this work. Authors also acknowledge Dr. D. K. Singh, MP&CED for facilitating the preparation of PES beads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Rao.

Ethics declarations

Authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Rao, A., Srivastava, A. et al. Experimental strategy for acid-free plutonium recovery from assorted matrices: Non-aqueous leaching followed by selective solid phase extraction. Korean J. Chem. Eng. 40, 2716–2723 (2023). https://doi.org/10.1007/s11814-023-1482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1482-3

Keywords

Navigation