Skip to main content

Advertisement

Log in

Zirconium-functionalized loofah biocomposite for adsorption catechol and amoxicillin

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cheap and green loofah as the substrate material was modified with epichlorohydrin and iminodiacetic acid (IDA) to obtain iminodiacetic acid-modified loofah (IDA-LG), and loaded zirconium (IV) onto IDA-LG by a simple complexation reaction to obtain novel biocomposite: zirconium-modified loofah (Zr-IDA-LG). The influence factors and adsorption mechanisms were explored by characterization and adsorption study toward catechol and amoxicillin in batch and fixed-bed modes. The study found that the surface morphology, specific surface area and internal functional groups of the adsorbent changed significantly, the isoelectric point of Zr-IDA-LG was shifted in the acidic direction (2.68 for Zr-IDA-LG) after the modification. This showed that modification of the loofah was successful. The adsorption of catechol and amoxicillin by Zr-IDA-LG showed that the pH range of the material was wide, and the coexisting ions had adverse effects on adsorption. The maximum adsorption capacity of Zr-IDA-LG from Langmuir model was 44.9±11.2 mg·g−1 for catechol and 16.8±;1.2 mg·g−1 for amoxicillin at 293 K. The adsorption isotherm and kinetic model of Zr-IDA-LG manifested that the adsorption process was dominated by monomolecular layer adsorption for catechol and monomolecular layer adsorption for amoxicillin with the presence of heterogeneous adsorption. Both adsorption processes were accompanied by ion exchange. The higher column and lower flow velocity were favorable for the fixed bed adsorption, while the Yan model could fit the fixed bed adsorption behavior. The adsorption quantity in column performance from breakthrough curves was to 20.0 mg·g−1 for catechol and 15.8 mg·g−1 for amoxicillin. Regeneration with 75% ethanol of spent Zr-IDA-LG was remarkable. The biocomposite is promising for removing some pollutants from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ma, X. Zhang, Q. Ma and B. Wang, J. Hazard. Mater., 165, 475 (2009).

    CAS  PubMed  Google Scholar 

  2. R. R. Karri, N. S. Jayakumar and J. N. Sahu, J. Mol. Liq., 231, 249 (2017).

    CAS  Google Scholar 

  3. C. Zhang, X. Wang, Z. Ma, Z. Luan, Y. Wang, Z. Wang and L. Wang, Environ. Chem. Lett., 18, 377 (2020).

    CAS  Google Scholar 

  4. Y.H. Fu, Y.F. Shen, Z.D. Zhang, X.L. Ge and M.D. Chen, Sci. Total Environ., 646, 1567 (2019).

    CAS  PubMed  Google Scholar 

  5. D. Y. Ma, S. Y. Zhang, S. H. Zhan, L. T. Feng, S. G. Zeng, Q. Q. Lin and Y. Pan, Ind. Eng. Chem. Res., 58, 20090 (2019).

    CAS  Google Scholar 

  6. N. Schweigert, A. J. B. Zehnder and R. I. L. Eggen, Environ. Microbiol., 3, 81 (2001).

    CAS  PubMed  Google Scholar 

  7. B. F. Negara, J. H. Sohn, J. S. Kim and J. S. Choi, Foods, 10, 452 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. B. A. de Marco, J. S. H. Natori, S. Fanelli, E. G. Tótoli and H. R. N. Salgado, Crit. Rev. Anal. Chem., 47, 267 (2017).

    PubMed  Google Scholar 

  9. L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).

    CAS  PubMed  Google Scholar 

  10. W. R. Chen, Y. J. Ding, C. T. Johnston, B. J. Teppen, S. A. Boyd and H. Li, Environ. Sci. Technol., 44, 4486 (2010).

    CAS  PubMed  Google Scholar 

  11. K. Kummerer, Chemosphere, 75, 435 (2009).

    PubMed  Google Scholar 

  12. A. A. Aryee, R. P. Han and L. B. Qu, J. Clean. Prod., 368, 133140 (2022).

    CAS  Google Scholar 

  13. A. Hrioua, A. Loudiki, A. Farahi, F. Laghrib, M. Bakasse, S. Lahrich, S. Saqrane and M. A. El Mhammedi, Bioelectrochemistry, 142, 107936 (2021).

    CAS  PubMed  Google Scholar 

  14. F. M. Mpatani, R. P. Han, A. A. Aryee, A. N. Kani, L. B. Qu and Z. H. Li, Sci. Total Environ., 780, 146629 (2021).

    CAS  PubMed  Google Scholar 

  15. F. Zhu, Y. M. Zheng, B. G. Zhang and Y. R. Dai, J. Hazard. Mater., 401, 123608 (2021).

    CAS  PubMed  Google Scholar 

  16. J. L. Wang, X. Liu, M. M. Yang, H. Y. Han, S. S. Zhang, G. F. Ouyang and R. P. Han, J. Mol. Liq., 338, 116698 (2021).

    CAS  Google Scholar 

  17. X. Xu, B. Y Gao, B. Jin and Q. Y. Yue, J. Mol. Liq., 215, 565 (2016).

    CAS  Google Scholar 

  18. S. Su, Q. Liu, J. Liu, H. Zhang, R. Li, X. Jing and J. Wang, J. Colloid Interface Sci., 530, 538 (2018).

    CAS  PubMed  Google Scholar 

  19. D. K. Verma, S. H. Hasan, D. Ranjan and R. M. Banik, Int. J. Environ. Sci. Technol., 11, 1927 (2014).

    CAS  Google Scholar 

  20. I. Anastopoulos and I. Pashalidis, J. Mol. Liq., 319, 114127 (2020).

    CAS  Google Scholar 

  21. R. Ahmad and S. Haseeb, Desal. Water Treat., 57, 17826 (2016).

    CAS  Google Scholar 

  22. Q. Kong, Y. N. Wang, L. Shu and M. S. Miao, Desalin. Water Treat., 57, 7933 (2016).

    CAS  Google Scholar 

  23. R. Tyagi and J. Jacob, React. Fund. Polym., 154, 104687 (2020).

    CAS  Google Scholar 

  24. A. A. Aryee, F. M. Mpatani, Y. Y. Du, A. N. Kani, E. Dovi, R. P. Han, Z. H. Li and L. B. Qu, Environ. Pollut., 268, 115729 (2021).

    CAS  PubMed  Google Scholar 

  25. P. A. Kavakli, C. Kavakli and O. Gü;ven, Rad. Phys. Chem., 94, 105 (2014).

    CAS  Google Scholar 

  26. M. Y. Liu, X. T. Zhang, Z. H. Li, L.B. Qu and R. P. Han, Carbohyd. Polym., 248, 116792 (2020).

    CAS  Google Scholar 

  27. K. K. Zhu, Y.F. Gu, R. Wang and R.P. Han, Desal. Water Treat., 236, 274 (2021).

    CAS  Google Scholar 

  28. B. R. Poudel, R. L. Aryal, S. K. Gautam, K. N. Ghimire, H. Paudyal and M. R. Pokhrel, J. Environ. Chem. Eng., 9, 106552 (2021).

    CAS  Google Scholar 

  29. J. L. Wang, X. Liu, H.Y. Han and R.P. Han, Desal. Water Treat., 253, 256 (2022).

    CAS  Google Scholar 

  30. D. Z. Markovic-Nikolic, A. L. Bojic, S. R. Savic, S. M. Petrovic, D. J. Cvetkovic, M. D. Cakic and G. S. Nikolic, J. Spedrosc., 2018, 1856109 (2018).

    Google Scholar 

  31. G. Yuvaraja, Y. X. Pang, D. Y. Chen, L. J. Kong, S. Mehmood, M. V Subbaiah, D. S. Rao, C. M. Pavuluri, J. C. Wen and G. M. Reddy, Int. J. Biol Macromol., 136, 177 (2019).

    CAS  PubMed  Google Scholar 

  32. M. A. Aslam, W Ding, S. U. Rehman, A. Hassan, Y. C. Bian, Q. C. Liu and Z. G. Sheng, Appl Surf. Sci., 543, 148785 (2021).

    CAS  Google Scholar 

  33. A. Naskar and R. Majumder, J. Mol. Liq., 242, 892 (2017).

    CAS  Google Scholar 

  34. X. C. Jin, Z. Y. Xiang, Q. G. Liu, Y. Chen and F. C. Lu, Bioresour. Technol., 244, 844 (2017).

    CAS  PubMed  Google Scholar 

  35. A. Ogawa and H. Fujimoto, Inorg. Chem., 41, 4888 (2002).

    CAS  PubMed  Google Scholar 

  36. K. Shakir, H. F. Ghoneimy, A. F. Elkafrawy, S. G. Beheir and M. Refaat, J. Hazard. Mater., 150, 765 (2008).

    CAS  PubMed  Google Scholar 

  37. S. Miyata, Clay. Clay Miner., 31, 305 (1983).

    CAS  Google Scholar 

  38. K. V. Kumar, S. Gadipelli, B. Wood, K. A. Ramisetty, A. A. Stewart, C. A. Howard, D. J. L. Brett and F. Rodriguez-Reinoso, J. Mater. Chem. A, 7, 10104 (2019).

    CAS  Google Scholar 

  39. H. Niknejad, A. Esrafili, M. Kermani, V. Oskoei and M. Farzadkia, J. Environ. Health Sci. Eng., 18, 1521 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Khajavian, S. Shahsavarifar, E. Salehi, V. Vatanpour, M. Masteri-Farahani, F. Ghaffari and S. A. Tabatabaei, Chem. Eng. Res. Des., 175, 131 (2021).

    CAS  Google Scholar 

  41. E. Vunain, D. Houndedjihou, M. Monjerezi, A. A. Muleja and B. Kodom, Water Air Soil Pollut., 229, 366 (2018).

    Google Scholar 

  42. J. Imanipoor, M. Mohammadi, M. Dinari and M.R. Ehsani, J. Chem. Eng. Data, 66, 389 (2021).

    CAS  Google Scholar 

  43. C. H. Ma, X. T. Zhang, K. Wen, R. Wang and R. P. Han, Korean J. Chem. Eng., 38(1), 135 (2021).

    CAS  Google Scholar 

  44. X. T. Zhang, S. S. Zhang, G. F. Ouyang and R. P. Han, Korean J. Chem. Eng., 39(7), 1839 (2022).

    CAS  Google Scholar 

  45. Y. N. Shang, X. Xu, Q. Y. Yue, B. Y. Gao and Y. W. Li, Environ. Sci. Nano, 7, 1444 (2020).

    CAS  Google Scholar 

  46. A. A. Aryee, E. Dovi, R. P. Han, Z. H. Li and L. B. Qu, J. Colloid Interface Sci., 598, 69 (2021).

    CAS  PubMed  Google Scholar 

  47. Z. Akzu and F. Gonen, Process Biochem., 39, 599 (2004).

    Google Scholar 

  48. E. Dovi, A.A. Aryee, A.N. Kani, F.M. Mpatani, J.J. Li, L.B. Qu and R. P. Han, J. Environ. Chem. Eng., 10(2), 107292 (2022).

    CAS  Google Scholar 

  49. A. Baharlouei, E. Jalilnejad and M. Sirousazar, Chem. Eng. Commun., 205, 1537 (2018).

    CAS  Google Scholar 

  50. B. Debnath, M. Majumdar, M. Bhowmik, K. L. Bhowmik, A. Debnath and D. N. Roy, J. Environ. Manage., 261, 110235 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Henan province basis and advancing technology research project (142300410224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Liu or Runping Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, X., Han, H. et al. Zirconium-functionalized loofah biocomposite for adsorption catechol and amoxicillin. Korean J. Chem. Eng. 40, 1970–1985 (2023). https://doi.org/10.1007/s11814-023-1477-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1477-0

Keywords

Navigation