Skip to main content

Advertisement

Log in

Feature construction for on-board early prediction of electric vehicle battery cycle life

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As the worldwide environmental crisis worsens, electric vehicles (EVs) are establishing themselves as ecofriendly alternatives to conventional fossil fuel vehicles. Lithium-ion batteries (LIBs) are a typical source of energy for EVs, but it is important to predict their life in order to ensure safe and optimal operation. However, because LIBs degrade in a nonlinear fashion and their state of health varies depending on operating conditions, achieving fast and accurate cycle life prediction has been a challenge. More importantly, on-board estimation is necessary because even the identical battery cells manufactured by the same company vary in their cycle lifetimes and operational characteristics, which we cannot specify in advance. In this paper, we propose a set of novel features that enable on-board battery cycle life prediction while maintaining high memory efficiency and low calculation complexity. The features’ performances were evaluated using a variety of machine learning models, ranging from simple linear elastic nets to nonlinear neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMS:

battery management system

CC:

constant current

CNN:

convolutional neural network

DNN (NN):

deep neural network

Enet:

elastic net

EV:

electric vehicle

GB:

gradient boosting

GPR:

gaussian process regression

KRR:

kernel ridge regression

LFP:

lithium iron phosphate

LIB:

lithium-ion battery

LSTM:

long short term memory

MAPE:

mean absolute percentage error

ML:

machine learning

NB:

naïve bayes

PCA:

principal component analysis

PI:

permutation importance

PSO:

particle swarm optimization

Qd:

discharge capacity

RFR:

random forest regression

RMSE:

root mean square error

RNN:

recurrent neural networks

RUL:

remaining useful life

SDAE:

stacked denoising autoencoder

SEI:

solid electrolyte interphase

SOH:

state of health

SVR:

support vector regression

TPWPME:

two phase wiener process with measurement errors

XGB:

extreme gradient boosting

References

  1. L. Cai, J. Meng, D.-I. Stroe, G. Luo and R. Teodorescu, J. Power Sources, 412, 615 (2019).

    CAS  Google Scholar 

  2. D.E. Newton, Fracking: A Reference Handbook: A Reference Handbook, ABC-CLIO (2015).

  3. J. Lee, D. Lee, C.B. Shin, S.-Y. Lee, S.-M. Oh, J.-J. Woo and I.-C. Jang, J. Korean Inst. Chem. Eng., 59, 393 (2021).

    Google Scholar 

  4. L. Gaines, Sustainable Mater. Technol., 1, 2 (2014).

    Google Scholar 

  5. X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, IEEE Trans. Ind. Electron., 61, 2804 (2013).

    Google Scholar 

  6. X. Peng and Y Li, J. Electrochem. Energy Convers. Storage, 19, 3 (2021).

    Google Scholar 

  7. D. Wang, F. Yang, Y. Zhao and K.-L. Tsui, Microelectron. Reliab., 78, 212 (2017).

    CAS  Google Scholar 

  8. S. S. Ng, Y. Xing and K. L. Tsui, Appl. Energy, 118, 114 (2014).

    Google Scholar 

  9. S. S. Mansouri, P. Karvelis, G. Georgoulas and G. Nikolakopoulos, IFAC-PapersOnLine, 50, 4727 (2017).

    Google Scholar 

  10. S. C. Nagpure, B. Bhushan and S. Babu, J. Electrochem. Soc., 160, A2111 (2013).

    CAS  Google Scholar 

  11. D. E. Demirocak and B. Bhushan, J. Power Sources, 280, 256 (2015).

    CAS  Google Scholar 

  12. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng and Z. Li, J. Power Sources, 251, 38 (2014).

    CAS  Google Scholar 

  13. P. Arora, R. E. White and M. Doyle, J. Electrochem. Soc., 145, 3647 (1998).

    CAS  Google Scholar 

  14. X. Xu, C. Yu, S. Tang, X. Sun, X. Si and L. Wu, IEEE Access, 7, 105186 (2019).

    Google Scholar 

  15. X. Shu, G. Li, J. Shen, W. Yan, Z. Chen and Y. Liu, J. Power Sources, 462, 228132 (2020).

    CAS  Google Scholar 

  16. M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc., 140, 1526 (1993).

    CAS  Google Scholar 

  17. P. Arora, M. Doyle and R. E. White, J. Electrochem. Soc., 146, 3543 (1999).

    CAS  Google Scholar 

  18. X. Li, Y. Ma and J. Zhu, Measurement, 109935 (2021).

  19. D. Song, C. Sun, Q. Wang and D. Jang, Energy Power Eng., 10, 10 (2018).

    Google Scholar 

  20. L. Cai, J. Meng, D.-I. Stroe, G. Luo and R. Teodorescu, IEEE Trans. Power Electron., 35, 11855 (2020).

    Google Scholar 

  21. K. A. Severson, P.M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, S. J. Harris, W. C. Chueh and R. D. Braatz, Nat. Energy, 4, 383 (2019).

    Google Scholar 

  22. L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang and L. Zhang, IEEE Access, 6, 50587 (2018).

    Google Scholar 

  23. Y. Li, C. Zou, M. Berecibar, E. Nanini-Maury, J. C.-W. Chan, P. Van den Bossche, J. Van Mierlo and N. Omar, Appl. Energy, 232, 197 (2018).

    CAS  Google Scholar 

  24. D. Yang, X. Zhang, R. Pan, Y. Wang and Z. Chen, J. Power Sources, 384, 387 (2018).

    CAS  Google Scholar 

  25. Y Yang, Appl. Energy, 292, 116897 (2021).

    Google Scholar 

  26. J. Liu, A. Saxena, K. Goebel, B. Saha and W Wang, Defense Technical Information Center (2010).

  27. M. Alipour, S. S. Tavallaey, A. M. Andersson and D. Brandell, ChemPhysChem, 23, e202100829 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. Tang, K. Yang, H. Zheng, S. Zhang and Z. Zhang, Measurement, 199, 111530 (2022).

    Google Scholar 

  29. S. Ansari, A. Ayob, M. H. Lipu, A. Hussain and M. H. M. Saad, J. Energy Storage, 56, 106050 (2022).

    Google Scholar 

  30. X.-Y. Yao, G. Chen, M. Pecht and B. Chen, J. Energy Storage, 58, 106437 (2023).

    Google Scholar 

  31. P. K. R. Maddikunta, G. Srivastava, T. R. Gadekallu, N. Deepa and P. Boopathy, IET Intelligent Transport Systems, 14, 1388 (2020).

    Google Scholar 

  32. F. Xu, F. Yang, Z. Fei, Z. Huang and K.-L. Tsui, Reliab. Eng. Syst. Saf., 208, 107396 (2021).

    Google Scholar 

  33. Z. Tong, J. Miao, S. Tong and Y Lu, J. Cleaner Prod., 317, 128265 (2021).

    CAS  Google Scholar 

  34. F. Yang, D. Wang, F. Xu, Z. Huang and K.-L. Tsui, J. Power Sources, 476, 228654 (2020).

    CAS  Google Scholar 

  35. Z. Fei, F. Yang, K.-L. Tsui, L. Li and Z. Zhang, Energy, 225, 120205 (2021).

    Google Scholar 

  36. Z. Zhou and D. A. Howey, arXiv:2211.05697 (2022).

  37. Z. Zhou, Y Liu, M. You, R. Xiong and X. Zhou, Green Energy. Meli. Transp., 1, 100008 (2022).

    Google Scholar 

  38. W. Lin and Y. Chai, Meas. Sci. Technol., 34(5), 055018 (2023).

    Google Scholar 

  39. M. Kabir and D. E. Demirocak, Int. J. Energy Res., 41, 1963 (2017).

    CAS  Google Scholar 

  40. D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, Solid State Ionics, 148, 405 (2002).

    CAS  Google Scholar 

  41. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Möller, J. Besen-hard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 147, 269 (2005).

    CAS  Google Scholar 

  42. C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce and D.A. Howey, J. Power Sources, 341, 373 (2017).

    CAS  Google Scholar 

  43. P. Ramadass, B. Haran, P. M. Gomadam, R. White and B. N. Popov, J. Electrochem. Soc., 151, A196 (2004).

    CAS  Google Scholar 

  44. A. Mukhopadhyay and B. W. Sheldon, Prog. Mater. Sci., 63, 58 (2014).

    CAS  Google Scholar 

  45. M. Palanisamy, M. H. Parekh and V. G. Pol, Adv. Funct. Mater., 30, 2003668 (2020).

    CAS  Google Scholar 

  46. Z. M. Salameh, M. A. Casacca and W. A. Lynch, IEEE Trans. Energy Convers., 7, 93 (1992).

    Google Scholar 

  47. B. Paxton and J. Newman, J. Electrochem. Soc., 144, 3818 (1997).

    CAS  Google Scholar 

  48. D. M. Hawkins, J. Chem. Inf. Comput. Sci., 44, 1 (2004).

    CAS  PubMed  Google Scholar 

  49. X. Ying, J. Phys.: Conf. Ser., 1168, 022022 (2019).

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-2016R1A5A1009592). The Institute of Engineering Research at Seoul National University provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeonsoo Kim or Jong Min Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Kim, Y. & Lee, J.M. Feature construction for on-board early prediction of electric vehicle battery cycle life. Korean J. Chem. Eng. 40, 1850–1862 (2023). https://doi.org/10.1007/s11814-023-1476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1476-1

Keywords

Navigation