Skip to main content
Log in

Effect of pyrolysis temperature on the physiochemical properties of biochars produced from raw and fermented rice husks

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the slow pyrolysis behavior of raw rice husk (RRH) and fermented rice husk (FRH) in a fixed-bed reactor at temperatures in the range of 200–600 °C. The effects of pyrolysis temperature on the biochar yield, composition, and physiochemical properties were examined to evaluate the energy potential of biochars produced from RRH and FRH. The FRH-derived biochar produced at 600 °C was found to be more suitable than the RRH-derived biochar because of its higher carbon content (68.9% vs 42.1%), GCV (31.6 vs 24.1 MJ kg−1), and true density (1.94 vs 1.54 g cm −3). The slow pyrolysis in the high-temperature regime facilitated the formation of lignin-rich and aromatically condensed biochar, making it particularly useful for producing carbon-rich materials. Thus, slow pyrolysis can be a technically viable approach for producing high-energy-density solid fuels that can replace medium-ranking coals in co-firing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Anwar, M. Gulfraz and M. Irshad, J. Radiat. Res. Appl. Sci., 7, 163 (2014).

    CAS  Google Scholar 

  2. C.H. Ko, S. H. Park, J.-K. Jeon, D.J. Suh, K.-E. Jeong and Y.-K. Park, Korean J. Chem. Eng., 29, 1657 (2012).

    CAS  Google Scholar 

  3. Y. H. Oh, I. Y Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    CAS  Google Scholar 

  4. L. J. Jönsson and C. Martín, Bioresour. Technol., 199, 103 (2016).

    PubMed  Google Scholar 

  5. F. R. Vieira, C. M. Romero Luna, G. L. A. F. Arce and I. Avila, Biomass Bioenergy, 132, 105412 (2020).

    CAS  Google Scholar 

  6. E. Menya, P. W. Olupot, H. Storz, M. Lubwama, Y. Kiros and M. J. John, Biomass Convers. Biorefin., 10, 57 (2020).

    CAS  Google Scholar 

  7. S. Khan, A. Nisar, B. Wu, Q.-L. Zhu, Y.-W Wang, G.-Q. Hu and M.-x. He, Sci. Total Environ., 814, 152872 (2022).

    CAS  PubMed  Google Scholar 

  8. H. Sana, S. Kanwal, J. Akhtar, R. Haider, S. Nawaz, N. Sheikh and S. Munir, Energy Sources Part A-Recovery Util. Environ. Eff., 39, 465 (2017).

    CAS  Google Scholar 

  9. A. Abbas and S. Ansumali, Bioenergy Res., 3, 328 (2010).

    Google Scholar 

  10. L. Dunnigan, P. J. Ashman, X. Zhang and C. W Kwong, J. Clean. Prod., 172, 1639 (2018).

    CAS  Google Scholar 

  11. VS. Sikarwar, M. Zhao, P.S. Fennell, N. Shah and E.J. Anthony, Prog. Energy Combust. Sci., 61, 189 (2017).

    Google Scholar 

  12. C. E. Brewer, K. Schmidt-Rohr, J. A. Satrio and R. C. Brown, Environ. Prog. Sustain. Energy: An Official Publication Am. Inst. Chem. Eng., 28, 386 (2009).

    CAS  Google Scholar 

  13. A. Tomczyk, Z. Sokolowska and P. Boguta, Rev. Environ. Sci. Biotechnol., 19, 191 (2020).

    CAS  Google Scholar 

  14. Z. Z. Chowdhury, M. Z. Karim, M. A. Ashraf and K Khalid, BioResources, 11, 3356 (2016).

    CAS  Google Scholar 

  15. L. Wang, Y. S. Ok, D. C. Tsang, D. S. Alessi, J. Rinklebe, H. Wang, O. Masek, R. Hou, D. O’Connor and D. Hou, Soil Use Manage., 36, 358 (2020).

    Google Scholar 

  16. G. Newalkar, K. Iisa, A. D. DAmico, C. Sievers and P. Agrawal, Energy Fuels, 28, 5144 (2014).

    CAS  Google Scholar 

  17. Z. Chowdhury Zaira, P. Kaushik, A. Y. Wageeh, S. Suresh, S. Syed Tawab, A. Ganiyu Abimbola, M. Emy, R. Rahman Faijur and J. Rafie Bin, Pyrolysis: A sustainable way to generate energy from waste, IntechOpen Publisher, Rijeka (2017).

    Google Scholar 

  18. H.-B. Kim, J.-G. Kim, T. Kim, D. S. Alessi and K. Baek, Chem. Eng. J., 393, 124687 (2020).

    CAS  Google Scholar 

  19. A. Demirbaç, Energy Convers. Manage., 42, 1357 (2001).

    Google Scholar 

  20. G. Wu, P. Qu, E. Sun, Z. Chang, Y. Xu and H. Huang, Bioresources, 10, 227 (2015).

    Google Scholar 

  21. W Su, H. Ma, Q. Wang, J. Li and J. Ma, J. Anal. Appl. Pyrolysis, 99, 79 (2013).

    CAS  Google Scholar 

  22. J. Poudel and S. C. Oh, Energies, 7, 5586 (2014).

    Google Scholar 

  23. A. Demirbas, Energy Sources Part A-Recovery Util. Environ. Eff., 29, 329 (2007).

    CAS  Google Scholar 

  24. A. Dawei, W Zhimin, Z. Shuting and Y. Hongxing, Int. J. Energy Res., 30, 349 (2006).

    Google Scholar 

  25. H. Soedjatmiko, R. Chrisnasari and P. H. Hardjo, IOP Conf. Ser.: Earth Environ Sci, 293, 012020 (2019).

    Google Scholar 

  26. M. Brebu and C. Vasile, CeHul. Chem. Technol, 44, 353 (2010).

    CAS  Google Scholar 

  27. S. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll and H. Hofbauer, J. Anal. Appl. Pyrolysis, 97, 1 (2012).

    CAS  Google Scholar 

  28. X. Cao and W Harris, Bioresour. Technol., 101, 5222 (2010).

    CAS  PubMed  Google Scholar 

  29. N. Muradov, B. Fidalgo, A.C. Gujar, N. Garceau and A. T-Raissi, Biomass Bioenergy, 42, 123 (2012).

    CAS  Google Scholar 

  30. A. Demirbas, J. Anal. Appl. Pyrolysis, 72, 243 (2004).

    CAS  Google Scholar 

  31. X. He, Z. Liu, W Niu, L. Yang, T. Zhou, D. Qin, Z. Niu and Q. Yuan, Energy, 143, 746 (2018).

    CAS  Google Scholar 

  32. M. Phanphanich and S. Mani, Bioresour. Technol., 102, 1246 (2011).

    CAS  PubMed  Google Scholar 

  33. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem and A. R. A. Usman, Bioresour. Technol, 131, 374 (2013).

    CAS  PubMed  Google Scholar 

  34. X. He, Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu and Q. Yuan, Energy, 143, 746 (2018).

    CAS  Google Scholar 

  35. W.-T. Tsai, S.-C. Liu and C.-H. Hsieh, J. Anal. Appl. Pyrolysis, 93, 63 (2012).

    CAS  Google Scholar 

  36. A. Demirbas, Energy Explor. Exploit., 20, 105 (2002).

    Google Scholar 

  37. S. Liang, Y. Han, L. Wei and A. G. McDonald, Biomass Convers. Biorefin., 5, 237 (2015).

    CAS  Google Scholar 

  38. A. Gani and I. Naruse, Renew. Energy, 32, 649 (2007).

    CAS  Google Scholar 

  39. R. H. White, Wood Fiber Sci., 19, 446 (2007).

    Google Scholar 

  40. T. Bridgeman, J. Jones, I. Shield and P. Williams, FueZ, 87, 844 (2008).

    CAS  Google Scholar 

  41. P. Kaparaju, M. Serrano, A. B. Thomsen, P. Kongjan and I. Angelidaki, Bioresour. Technol, 100, 2562 (2009).

    CAS  PubMed  Google Scholar 

  42. P. Sannigrahi and A. J. Ragauskas, J. Biobased Mater. Bioenergy, 5, 514 (2011).

    CAS  Google Scholar 

  43. H. Kawamoto, J. Wood Sci., 63, 117 (2017).

    CAS  Google Scholar 

  44. S. Suman and S. Gautam, Energy Sources Part A-Recovery Util. Environ. Eff., 39, 933 (2017).

    CAS  Google Scholar 

  45. Z.-H. Lu, L.-T. Li, W-H. Min, F. Wang and E. Tatsumi, Int. J. Food Sci. Tech., 40, 985 (2005).

    CAS  Google Scholar 

  46. X. Zhang, P. Zhang, X. Yuan, Y. Li and L. Han, Bioresour. Technol., 296, 122318 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of the Punjab, Lahore, Pakistan for financial and technical assistance for this study. Additional support provided by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) by way of granting financial aid from the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea (No. 2021010000001B) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Zeb or Jaehoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafiza, S., Riaz, A., Arshad, Z. et al. Effect of pyrolysis temperature on the physiochemical properties of biochars produced from raw and fermented rice husks. Korean J. Chem. Eng. 40, 1986–1992 (2023). https://doi.org/10.1007/s11814-023-1465-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1465-4

Keywords

Navigation