Skip to main content

Advertisement

Log in

Visibly transparent UV protection and adjusted mechanical properties of films composed of lignin-derived wastes and poly[(R)-3-hydroxybutyric acid]

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Blended films composed of poly[(R)-3-hydroxybutyric acid] (P3HB) and lignin wastes were prepared to adjust the mechanical and optical properties of P3HB films. In addition to the organosolv lignin extracted from oak, the oligomeric or polymeric byproducts obtained during the reductive catalytic depolymerization of lignin were mixed with P3HB. This adjusted the mechanical and optical properties of films to manipulate biodegradable P3HB films and create new applications of lignin wastes. When the solid residue obtained from depolymerization of organosolv lignin in an aqueous methanol solution was mixed with P3HB, the elongation at the break increased from 1.6±0.3% to 4.9±1.0% and Young’s modulus decreased from 1.97±0.21 GPa to 0.98±0.11 GPa depending on the depolymerization conditions. The films composed of P3HB and organosolv lignin blocked UV and a great deal of visible light, exhibiting 0.3–11.1% transmittance of UVA and 24.8–61.6% transmittance of visible light. However, those composed of P3HB and depolymerized lignin prepared during lignin depolymerization exhibited significant UV blocking with good transparency, featuring 0.7–39.8% transmittance of UVA and 33.7–78.3% transmittance of visible light. The adjusted mechanical and optical properties of blended films can be attributed to the interaction between P3HB and lignin derivatives. This study can be useful to valorize lignin-based waste obtained during the process of depolymerizing lignin to valuable phenolic monomers. Moreover, it can contribute to the development of the lignin-based sustainable chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Raza, S. Abid and I. M. Banat, Int. Biodeterior. Biodegrad., 126, 45 (2018).

    Article  CAS  Google Scholar 

  2. S. Qian, X. Dai, Y. Qi and H. Ren, BioResources, 10, 3169 (2015).

    CAS  Google Scholar 

  3. Y-W. Wang, Q. Wu and G.-Q. Chen, Biomaterials, 24, 4621 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. P. Anbukarasu, D. Sauvageau and A. Elias, Sci. Rep., 5, 17884 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. I. Lugoloobi, X. L. Li, Y. Zhang, Z. Mao, B. Wang, X. Sui and X. Feng, Int. J. Biol. Macromol., 165, 3078 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. P. Vostrejs, D. Adamcová, M. D. Vaverková, V. Enev, M. Kalina, M. Machovsky, M. Šourková, I. Marova and A. Kovalcik, Rsc Adv., 10, 29202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Q. Xing, D. Ruch, P. Dubois, L. Wu and W-J. Wang, ACS Sustain. Chem. Eng., 5, 10342 (2017).

    Article  CAS  Google Scholar 

  8. L. R. Chiappero, S. S. Bartolomei, D. A. Estenoz, E. A. B. Moura and V. V. Nicolau, J. Polym. Environ., 29, 450 (2020).

    Article  Google Scholar 

  9. A. Gregorova, S. Redik, V. Sedlarik and F. Stelzer, Lignin-containing polyethylene films with antibacterial activity, NANOCON International Conference, TANGER Ltd., Ostrava, Brno, Czech Republic, 184 (2011).

    Google Scholar 

  10. J. Yang, Y. C. Ching and C. H. Chuah, Polymers, 11, 751 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Kim, J. Suhr, H.-W. Seo, H. Sun, S. Kim, I.-K. Park, S.-H. Kim, Y. Lee, K.-J. Kim and J.-D. Nam, Sci. Rep., 7, 43596 (2017).

    Article  PubMed Central  Google Scholar 

  12. B. Rukmanikrishnan, S. Ramalingam, S. K. Rajasekharan, J. Lee and J. Lee, Int. J. Biol. Macromol., 153, 55 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. H. Sadeghifar and A. Ragauskas, Polymers, 12, 1134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Paulsson and J. Parkås, BioResources, 7, 5995 (2012).

    Article  Google Scholar 

  15. S. Oh, S. Gu, J.-W. Choi, D. J. Suh, H. Lee, C. S. Kim, K. H. Kim, C.-J. Yoo, J. Choi and J.-M. Ha, J. Environ. Chem. Eng., 10, 108085 (2022).

    Article  CAS  Google Scholar 

  16. A. Karnitski, J.-W. Choi, D. J. Suh, C.-J. Yoo, H. Lee, K. H. Kim, C. S. Kim, K. Kim and J.-M. Ha, Catal. Today, 411–412, 113844 (2022).

    Google Scholar 

  17. S. Gu, J.-W. Choi, H. Lee, D. J. Suh, J. Choi and J.-M. Ha, Environ. Pollut., 268, 115674 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. J. B. Sluiter, R. O. Ruiz, C. J. Scarlata, A. D. Sluiter and D. W. Templeton, J. Agric. Food Chem., 58, 9043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. W. Templeton, C. J. Scarlata, J. B. Sluiter and E. J. Wolfrum, J. Agric. Food Chem., 58, 9054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Kim, D. Son, J.-W. Choi, J. Jae, D. J. Suh, J.-M. Ha and K.-Y. Lee, Chem. Eng. J., 309, 187 (2017).

    Article  CAS  Google Scholar 

  21. D. Son, S. Gu, J.-W. Choi, D. J. Suh, J. Jae, J. Choi and J.-M. Ha, J. Ind. Eng. Chem., 69, 304 (2019).

    Article  CAS  Google Scholar 

  22. A. Granata and D. S. Argyropoulos, J. Agric. Food Chem., 43, 1538 (1995).

    Article  CAS  Google Scholar 

  23. Y. Pu, S. Cao and A. J. Ragauskas, Energy Environ. Sci., 4, 3154 (2011).

    Article  CAS  Google Scholar 

  24. H. Ben and J. R. Ferrell III, RSC Adv., 6, 17567 (2016).

    Article  CAS  Google Scholar 

  25. Y. Lu, Y.-C. Lu, H.-Q. Hu, F.-J. Xie, X.-Y. Wei and X. Fan, J. Spectrosc., 2017, 1 (2017).

    Article  CAS  Google Scholar 

  26. X. Meng, C. Crestini, H. Ben, N. Hao, Y. Pu, A. J. Ragauskas and D. S. Argyropoulos, Nat. Protoc., 14, 2627 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. R. V. Chernozem, O. Guselnikova, M. A. Surmeneva, P. S. Postnikov, A. A. Abalymov, B. V. Parakhonskiy, N. De Roo, D. Depla, A. G. Skirtach and R. A. Surmenev, Appl. Mater. Today, 20, 100758 (2020).

    Article  Google Scholar 

  28. S. Phongtamrug and K. Tashiro, Macromolecules, 52, 2995 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Science and Technology (KIST) Institutional Program (2E31853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Myeong Ha.

Ethics declarations

There are no conflicts to declare.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2023_1442_MOESM1_ESM.pdf

Visibly transparent UV protection and adjusted mechanical properties of films composed of lignin-derived wastes and poly[(R)-3-hydroxybutyric acid]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnitski, A., Choi, JW., Kim, H. et al. Visibly transparent UV protection and adjusted mechanical properties of films composed of lignin-derived wastes and poly[(R)-3-hydroxybutyric acid]. Korean J. Chem. Eng. 40, 2321–2333 (2023). https://doi.org/10.1007/s11814-023-1442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1442-y

Keywords

Navigation