Skip to main content
Log in

Sustainable production of acrolein over highly stable and selective WO3 over SiO2-TiO2 catalysts

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of the addition of colloidal silica (cSiO2) and solvents used in the catalyst preparation on the activity and stability of WO3-TiO2 catalysts are reported in this paper. The highly stable and selective WO3 supported cSiO2-TiO2 catalysts were prepared and tested in the vapor-phase glycerol oxy-dehydration. WO3-TiO2 catalysts with and without cSiO2 were characterized by XRD, SEM, NH3-TPD, infrared spectroscopy of pyridine (FTIR-Py), XPS, RAMAN, and N2 adsorption-desorption (BET). The highest medium strength acidity and optimum Brønsted to Lewis acid site ratio of WO3 catalysts were achieved upon the addition of colloidal silica (cSiO2) onto TiO2 support. The medium strength acidity of Brønsted acid sites was responsible for the improved acrolein selectivity and stability. The other major factors in glycerol conversion and acrolein selectivity were the glycerol content and liquid hourly space velocity. The yield to acrolein was up to 70% and kept almost constant in a 50 h continuous run at 300 °C. The gradual decrease in glycerol conversion was due to the build-up of oxygen-containing carbonaceous materials deposited on the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Incorrect Format. Please Follow The Guide

  1. OECD-FAO OECD-FAO Agricultural Outlook 2021–2030, ISBN 978-92-5-134608-2 (2021).

  2. A. Corma, G. W. Huber, L. Sauvanaud and P. O’Connor, J. Catal, 257, 163 (2008).

    Article  CAS  Google Scholar 

  3. M. Pagliaro and M. Rossi, The Future of Glycerol: RSC Publishing, Chapter 7 Dehydration, ISBN 9781849730464 (2010).

  4. M. Checa, S. Nogales-Delgado, V. Montes and J. M. Encinar, Catalysts, 10, 1 (2020).

    Article  Google Scholar 

  5. S. T. Wu, Q. M. She, R. Tesser, M. D. Serio and C. H. Zhou, Catal. Rev. - Sci. Eng, 62, 481 (2020).

    Article  CAS  Google Scholar 

  6. D. Sun, Y. Yamada, S. Sato and W. Ueda, Green Chem, 19, 3186 (2017).

    Article  CAS  Google Scholar 

  7. S. Chozhavendhan, G. Karthiga Devi, B. Bharathiraja, R. Praveen Kumar and S. Elavazhagan, Assessment of crude glycerol utilization for sustainable development of biorefineries, Elsevier Inc. (2020).

  8. M. Dalil, D. Carnevali, J. L. Dubois and G. S. Patience, Chem. Eng. J., 270, 557 (2015).

    Article  CAS  Google Scholar 

  9. L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu and T. Jiang, Chem. Eng. J, 180, 277 (2012).

    Article  CAS  Google Scholar 

  10. I. Martinuzzi, Y. Azizi, O. Zahraa and J. P. Leclerc, Chem. Eng. Sci., 134, 663 (2015).

    Article  CAS  Google Scholar 

  11. I. Martinuzzi, Y. Azizi, J. F. Devaux, S. Tretjak, O. Zahraa and J. P. Leclerc, Chem. Eng. Sci, 116, 118 (2014).

    Article  CAS  Google Scholar 

  12. C. A. G. Quispe, C. J. R. Coronado, J. A. Carvalho, Renew. Sustain. Energy Rev, 27, 475 (2013).

    Article  CAS  Google Scholar 

  13. I. Pala-Rosas, J.L. Contreras, J. Salmones, B. Zeifert, R. López-Medina, J. Navarrete-Bolaños, S. Hernández-Ramírez, J. Pérez-Cabrera and A.A. Fragoso-Montes De Oca, Catalysts, 11, 1 (2021).

    Article  Google Scholar 

  14. I. Pala Rosas, J. Luis Contreras Larios, B. Zeifert and J. Salmones Blásquez, Glycerine Prod. Transform. - An Innov. Platf. Sustain. Biorefinery Energy, 1 (2019).

  15. T.M. Neves, J. O. Fernandes, L.M. Lião, E. Deise da Silva, C. Augusto da Rosa and V.B. Mortola, Micropor. Mesopor. Mater, 275, 244 (2019).

    Article  CAS  Google Scholar 

  16. E. Tsukuda, S. Sato, R. Takahashi and T. Sodesawa, Catal. Commun, 8, 1349 (2007).

    Article  CAS  Google Scholar 

  17. A. Abdullah, A. Z. Abdullah, M. Ahmed, P. U. Okoye and M. Shahadat, Can. J. Chem. Eng., 1 (2021).

  18. B. Katryniok, S. Paul, M. Capron and F. Dumeignil, ChemSus-Chem, 2, 719 (2009).

    Article  CAS  Google Scholar 

  19. M. Dalil, D. Carnevali, M. Edake, A. Auroux, J. L. Dubois and G. S. Patience, J. Mol. Catal. A Chem, 421, 146 (2016).

    Article  CAS  Google Scholar 

  20. M. Dalil, M. Edake, C. Sudeau, J.L. Dubois and G.S. Patience, Appl. Catal. A Gen., 522, 80 (2016).

    Article  CAS  Google Scholar 

  21. C. Hulteberg, A. Leveau and J. G. M. Brandin, Top. Catal., 60, 1462 (2017).

    Article  CAS  Google Scholar 

  22. M. Massa, A. Andersson, E. Finocchio, G. Busca, F. Lenrick and L. R. Wallenberg, J. Catal., 297, 93 (2013).

    Article  CAS  Google Scholar 

  23. Z. Babaei, A. Najafi Chermahini and M. Dinari, J. Colloid Interface Sci., 563, 1 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. R. Liu, T. Wang, D. Cai and Y. Jin, Ind. Eng. Chem. Res., 53, 8667 (2014).

    Article  CAS  Google Scholar 

  25. S. Musić, N. Filipović-Vinceković and L. Sekovanić, Brazilian J. Chem. Eng., 28, 89 (2011).

    Article  Google Scholar 

  26. X. Liu, H. Chen, X. Wu, L. Cao, P. Jiang, Q. Yu and Y. Ma, Catal. Sci. Technol., 9, 3711 (2019).

    Article  CAS  Google Scholar 

  27. M. Mokhtarifar, D. T. Nguyen, M. V. Diamanti, R. Kaveh, M. Asa, M. Sakar, M. P. Pedeferri and T. O. Do, New J. Chem., 44, 20375 (2020).

    Article  CAS  Google Scholar 

  28. C. Liebig, S. Paul, B. Katryniok, C. Guillon, J. L. Couturier, J. L. Dubois, F. Dumeignil and W. F. Hoelderich, Appl. Catal. B Environ., 132–133, 170 (2013).

    Article  Google Scholar 

  29. H. Yang, D. Zhang and L. Wang, Mater. Lett., 57, 674 (2002).

    Article  CAS  Google Scholar 

  30. J. H. Pan and WI. Lee, Chem. Mater., 18, 847 (2006).

    Article  CAS  Google Scholar 

  31. A. Tagliaferro, M. Rovere, E. Padovano, M. Bartoli, M. Giorcelli, Nanomaterials, 10, 1 (2020).

    Article  Google Scholar 

  32. E. I. Ross-Medgaarden and I. E. Wachs, J. Phys. Chem. C, 111, 15089 (2007).

    Article  CAS  Google Scholar 

  33. G. D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis and A. Lycourghiotis, J. Catal., 262, 266 (2009).

    Article  CAS  Google Scholar 

  34. A.M. Hirt, J. Phys. Chem., 95, 991 (1991).

    Google Scholar 

  35. P. Lauriol-Garbay, J. M. M. Millet, S. Loridant, V. Bellire-Baca and P. Rey, J. Catal., 280, 68 (2011).

    Article  CAS  Google Scholar 

  36. X. C. Jiang, C. H. Zhou, R. Tesser, M. Di Serio, D. S. Tong and J. R. Zhang, Ind. Eng. Chem. Res., 57, 10736 (2018).

    Article  CAS  Google Scholar 

  37. F. Cavani, S. Guidetti, L. Marinelli, M. Piccinini, E. Ghedini and M. Signoretto, Appl. Catal. B Environ., 100, 197 (2010).

    Article  CAS  Google Scholar 

  38. T. Ma, Z. Yun, W. Xu, L. Chen, L. Li, J. Ding and R. Shao, Chem. Eng. J., 294, 343 (2016).

    Article  CAS  Google Scholar 

  39. M. Akizuki and Y Oshima, Ind. Eng. Chem. Res., 51, 12253 (2012).

    Article  CAS  Google Scholar 

  40. A. Talebian-Kiakalaieh and N. A. S. Amin, Chem. Eng. Trans., 56, 655 (2017).

    Google Scholar 

  41. A. Chieregato, M. D. Soriano, F. Basile, G. Liosi, S. Zamora, P. Concepciòn, F. Cavani and J. M. López Nieto, Appl. Catal. B Environ., 150–151, 37 (2014).

    Article  Google Scholar 

  42. X. Feng, Y. Yao, Q. Su, L. Zhao, W. Jiang, W. Ji and C. T. Au, Appl. Catal. B Environ., 164, 31 (2015).

    Article  CAS  Google Scholar 

  43. J.-L. Dubois, K. Okumura, Y. Kobayash and R. Hiraoka, Improved Process of Dehydration Reactions, WO2013017904 (2013).

  44. J.-L. Dubois, Method for Synthesis of Acrolein from Glycerol US 2010/0274038A1 (2010).

  45. R. Znaiguia, L. Brandhorst, N. Christin, V. Bellière Baca, P. Rey, J. M. M. Millet and S. Loridant, Micropor. Mesopor. Mater., 196, 97 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) grant numbers 119M433 and 118C143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Boz.

Electronic supplementary material

11814_2023_1406_MOESM1_ESM.pdf

Supporting Information: Sustainable production of acrolein over highly stable and selective WO3 over SiO2-TiO2 catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boz, I., Boroglu, M.S., Zengin, Y. et al. Sustainable production of acrolein over highly stable and selective WO3 over SiO2-TiO2 catalysts. Korean J. Chem. Eng. 40, 1882–1891 (2023). https://doi.org/10.1007/s11814-023-1406-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1406-2

Keywords

Navigation