Skip to main content
Log in

Characterization of Ceramic Beads for the Removal of Organic Micropollutants from Wastewater and Prediction of Their Adsorption Properties by In Silico Quantitative Structure–Adsorption Relationship Modeling

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study shows that ceramic beads, which are often used as adsorbents in wastewater treatment, can adsorb a wide range of organic micropollutants in both ionic and non-ionic forms, and the adsorption properties can be characterized through experimental studies and theoretical modeling. Actually, since there is a myriad type of chemicals, there is a limit to experimentally investigating the adsorption properties of ceramic beads. Therefore, it is necessary to estimate the adsorption properties experimentally, while a prediction model for the adsorption relationship between ceramic beads and chemicals is developed. In this study, the adsorption properties of ceramic beads, as estimated by performing isotherms and fitting Langmuir and Freundlich models, were predicted using linear free energy relationship descriptors comprising in silico calculated descriptors. In addition, the Langmuir model derives maximum uptake (qm) and adsorption affinity (b), and the Freundlich model estimates equilibrium constant (KF), meaning maximum uptake, and Freundlich exponent (n), as an indicator of adsorption compatibility. The results demonstrated that ceramic beads can be considered a suitable type of adsorbent and have heterogeneous adsorptions, as confirmed by Freundlich fitting. In the modeling study, it was checked that the employed linear free energy relationship (LFER) model could not be used to predict the heterogeneous adsorption properties estimated by the Freundlich model, while it could predict the homogeneous properties estimated by the Langmuir model. The developed model could predict the qm in R2 of 0.70 with a standard error of 0.22 log units and the adsorption affinity (log b) in R2 of 0.71 with a standard error of 0.38 log units. These results will help predict the adsorption properties of unstudied micropollutants on ceramic beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. M. Shakya, T. Nakamura, S. Shrestha, S. Pathak, K. Nishida, R. Malla, Water Air Soil Pollut. (2022). https://doi.org/10.1007/s11270-021-05483-8

    Article  Google Scholar 

  2. B. Buning, D. Rechtenbach, J. Behrendt, R. Otterpohl, Environ. Prog. Sustain. Energy (2021). https://doi.org/10.1002/ep.13587

    Article  Google Scholar 

  3. X. Ma, Z. Wang, Processes (2022). https://doi.org/10.3390/pr10010124

    Article  Google Scholar 

  4. D.S. Kwon, S.Y. Tak, J.E. Lee, M.K. Kim, Y.H. Lee, D.W. Han, S. Kang, K.D. Zoh, Environ. Sci. Pollut. Res. Int. 24, 17606 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-Amador, R. Segura-Cruz, Sustainability 11, 2672 (2019)

    Article  Google Scholar 

  6. A. Musolff, S. Leschik, F. Reinstorf, G. Strauch, M. Schirmer, Environ. Sci. Technol. 44, 4877 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Y. Lee, L. Kovalova, C.S. McArdell, U. von Gunten, Water Res. 64, 134 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. D. Reif, L. Weisz, K. Kobsik, H. Schaar, E. Saracevic, J. Krampe, N. Kreuzinger, J. Environ. Chem. Eng. 11, 110117 (2023)

    Article  CAS  Google Scholar 

  9. C.-W. Cho, T.P.T. Pham, S. Kim, M.-H. Song, Y.-J. Chung, Y.-S. Yun, Water Res. 90, 294 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. B.-G. Cho, S.-B. Mun, C.-R. Lim, S.B. Kang, C.-W. Cho, Y.-S. Yun, J. Hazard. Mater. 426, 128087 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. B.G. Cho, J.H. Lee, H.I. Kim, S.R. Jin, D.G. Kim, C.W. Cho, Y.S. Yun, Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.115593

    Article  PubMed  Google Scholar 

  12. C.-W. Cho, Y. Zhao, J.-W. Choi, J.-A. Kim, J.K. Bediako, S. Lin, M.-H. Song, Y.-S. Yun, Environ. Res. 192, 110271 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. C.W. Cho, C.R. Lim, B.G. Cho, S.B. Mun, J.W. Choi, Y. Zhao, S. Kim, Y.S. Yun, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.131341

    Article  PubMed  PubMed Central  Google Scholar 

  14. C.W. Cho, Y.F. Zhao, J.W. Choi, J.A. Kim, J.K. Bediako, S. Lin, M.H. Song, Y.S. Yun, Environ. Res. (2021). https://doi.org/10.1016/j.envres.2020.110271

    Article  PubMed  PubMed Central  Google Scholar 

  15. H. Wang, L. Sun, K. Yan, J. Wang, C. Wang, G. Yu, Y. Wang, Chemosphere 266, 129230 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Energy Procedia 50, 113 (2014)

    Article  CAS  Google Scholar 

  17. R. Gao, D. Liu, Y. Huang, G. Li, Ceram. Int. 46, 19799 (2020)

    Article  CAS  Google Scholar 

  18. B. Rao, E.S. Rubin, Environ. Sci. Technol. 36, 4467 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. P.H. Cong, X.Y. Wu, H. Nanao, S. Mori, Tribol. Lett. 15, 65 (2003)

    Article  CAS  Google Scholar 

  20. G. Crini, Bioresour. Technol. 97, 1061 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. J.H. Kim, S.Y. Lee, S. Rha, Y.J. Lee, H.Y. Jo, S. Lee, Water Air Soil Pollut. (2021). https://doi.org/10.1007/s11270-021-05425-4

    Article  Google Scholar 

  22. V.S. Kumawat, A. Vyas, S. Bandyopadhyay-Ghosh, S.B. Ghosh, J. Non-Cryst. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120303

    Article  Google Scholar 

  23. S. M. Tine Aprianti, Selpiana, Ria Komala and Surya Hatina, INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS), 2014 (2018).

  24. Y. Liu, Colloids Surf., A 274, 34 (2006)

    Article  CAS  Google Scholar 

  25. H. Freundlich, Z. Phys. Chem. 57U, 385 (1907)

    Article  Google Scholar 

  26. M.H. Abraham, R.P. Austin, Eur. J. Med. Chem. 47, 202 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. C.W. Cho, S. Stolte, Y.S. Yun, I. Krossing, J. Thoming, RSC Adv. 5, 80634 (2015)

    Article  ADS  CAS  Google Scholar 

  28. K. Kuroki, Ayaka) ; Hiroto, M (Hiroto, Megumi) ; Urushihara, Y (Urushihara, Yoshitomo) ; Horikawa, T (Horikawa, Toshihide) ; Sotowa, KI (Sotowa, Ken-Ichiro) ; Avila, JRA (Avila, Jesus Rafael Alcantara), SPRINGERONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, NY 10004, UNITED STATESSpringer, 25, 1251 (2018)

  29. C. Faur, H. Metivier-Pignon, P. Le Cloirec, Adsorpt.-J. Int. Adsorp. Soc. 11, 479 (2005)

    Article  CAS  Google Scholar 

  30. J.W. Choi, C.W. Cho, Y.S. Yun, J. Hazard. Mater. (2022). https://doi.org/10.1016/j.jhazmat.2021.127214

    Article  PubMed  PubMed Central  Google Scholar 

  31. S.R. Jin, B.G. Cho, S.B. Mun, S.J. Kim, C.W. Cho, Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.116349

    Article  PubMed  Google Scholar 

  32. Y. Zhao, S. Lin, J.-W. Choi, J.K. Bediako, M.-H. Song, J.-A. Kim, C.-W. Cho, Y.-S. Yun, Chem. Eng. J. 362, 199 (2019)

    Article  CAS  Google Scholar 

  33. W.C. Tengyi Zhu, Y. Rajendra Prasad Singh, J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.122957

    Article  PubMed  Google Scholar 

  34. F. Eckert, "Cosmotherm reference manual, version c3.0, release 15.01", Leverkusen, (1999–2014).

  35. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, J. Chem. (2011). https://doi.org/10.1186/1758-2946-3-33

    Article  Google Scholar 

  36. S. Klamt, J. Chem. Soc. Perkin Trans 2, 799 (1993)

    Article  Google Scholar 

  37. A. Schäfer, H. Horn, R. Ahlrichs, Chem. Phys. 100, 5829 (1994)

    ADS  Google Scholar 

  38. Z.F. Shao, M.J. Er, Neurocomputing 194, 260 (2016)

    Article  Google Scholar 

  39. P. Gramatica, QSAR Comb. Sci. 26, 694 (2007)

    Article  CAS  Google Scholar 

  40. M. Jalali-Heravi, M. Asadollahi-Baboli, QSAR Comb. Sci. 27, 750 (2008)

    Article  CAS  Google Scholar 

  41. S. Kalam, S.A. Abu-Khamsin, M.S. Kamal, S. Patil, ACS Omega 6, 32342 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)

    Article  CAS  Google Scholar 

  43. M.H. Abraham, W.E. Acree, Phys. Chem. Chem. Phys. 12, 13182 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korean Government through NRF (RS-2023-00278351) grants and Chonnam National University (Grant number: 2021-2123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul-Woong Cho.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, SR., Lee, KY., Cho, BG. et al. Characterization of Ceramic Beads for the Removal of Organic Micropollutants from Wastewater and Prediction of Their Adsorption Properties by In Silico Quantitative Structure–Adsorption Relationship Modeling. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-023-00002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-023-00002-3

Keywords

Navigation