Skip to main content

Advertisement

Log in

Development of an ultrasound-negative pressure cavitation fractional precipitation for the purification of (+)-dihydromyricetin from biomass

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An ultrasound-negative pressure cavitation fractional precipitation method was developed to efficiently purify (+)-dihydromyricetin. The precipitation efficiency of the developed method was significantly higher than that of the ultrasound- and negative pressure-fractional precipitation methods. In particular, under an ultrasonic power of 180 to 250 W and a negative pressure intensity of −200 mmHg, highly pure (+)-dihydromyricetin could be obtained with a high yield of up to 97.56% in only one minute of precipitation. Kinetic analysis results showed that when both ultrasound and negative pressure were introduced during fractional precipitation, the rate constant increased by 1.4 to 7.1 times compared to the conventional fractional precipitation, and the activation energy decreased by −1,299 to −4,550 J/mol. In addition, the particle size of the precipitate was reduced by 1.9 to 4.0 times, and the diffusion coefficient increased by 2.3 to 5.0 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Xie, X. He, K. Chen, J. Chen, K. Sakao and D.-X. Hou, Antioxidants, 8, 295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Xiong, G.-H. Zhu, Y.-N. Zhang, Q. Hu, H.-N. Wang, H.-N. Yu, X.-Y. Qin, X.-Q. Guan, Y.-W. Xiang, H. Tang and G.-B. Ge, Int. J. Biol. Macromol., 187, 976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. B. Ji and J. H. Kim, Korean J. Chem. Eng. Res., 56, 370 (2018).

    CAS  Google Scholar 

  4. A. J. Al Omran, A. S. Shao, S. Watanabe, Z. Zhang, J. Zhang, C. Xue, J. Watanabe, D. L. Davies, X. M. Shao and J. Liang, J. Neuroinflammation, 19, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Q. Du, W. Cai, M. Xia and Y. Ito, J. Chromatogr. A, 973, 217 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. M. Yohsikawa and T. Murakami, Chem. Pharm. Bull., 44, 1736 (1996).

    Article  Google Scholar 

  7. Premium market, Global dihydroquercetin market to settle at 5.6% growth rate by 2021–27, https://www.marketpremiumpost.com/2021/11/08/global-dihydroquercetin-market-to-settle-t-5-6-growth-rate-by-2021-27 (2021).

  8. K. H. Lee and J. H. Kim, Biotechnol. Bioprocess Eng., 13, 274 (2008).

    Article  CAS  Google Scholar 

  9. M. K. Lim and J. H. Kim, Korean J. Microbiol. Biotechnol., 42, 25 (2014).

    Article  CAS  Google Scholar 

  10. S. R. Oh and J. H. Kim, Korean J. Chem. Eng., 38, 480 (2021).

    Article  CAS  Google Scholar 

  11. H. S. Min and J. H. Kim, Korean J. Chem. Eng., 39, 58 (2022).

    Article  CAS  Google Scholar 

  12. J. Hong and J. H. Kim, Korean J. Chem. Eng., In press (2022).

  13. S. V. Dalvi and M. D. Yadav, Ultrason. Sonochem., 24, 114 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Z. Tan, Q. Li, C. Wang, W. Zhou, Y. Yang, H. Wang, Y. Yi and F. Li, Molecules, 22, 1483 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Miyamoto and K. Shimono, Molecules, 25, 5340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 36, 86 (2020).

    Article  Google Scholar 

  17. H. S. Min, H. G. Kim and J. H. Kim, Korean J. Chem. Eng., 39, 398 (2022).

    Article  CAS  Google Scholar 

  18. H. J. Kang and J. H. Kim, Process Biochem., 99, 316 (2020).

    Article  CAS  Google Scholar 

  19. P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun and J. Lee, Asian J. Pharm. Sci., 9, 304 (2014).

    Article  Google Scholar 

  20. E. B. Cho, W. K. Cho, K. H. Cha and J. S. Park, Int. J. Pharm., 396, 91 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. B. W. Zeiger and K. S. Suslick, J. Am. Chem. Soc., 133, 14530 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. D. Ma, J. S. Marshall and J. Wu, J. Acoust. Soc. Am., 114, 3496 (2018).

    Article  Google Scholar 

  23. N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114, 7610 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Kim, JH. Development of an ultrasound-negative pressure cavitation fractional precipitation for the purification of (+)-dihydromyricetin from biomass. Korean J. Chem. Eng. 40, 1133–1140 (2023). https://doi.org/10.1007/s11814-022-1367-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1367-x

Keywords

Navigation