Skip to main content
Log in

Preparation of thermally recyclable γ-alumina nanoparticles from boehmite for adsorption of anionic dyes: Spectrophotometric study, structural characterization and industrial experience

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

γ-Alumina powders were produced from the calcination of pseudo-boehmite for scavenging anionic blue (RS 150), and red (RB 133) dyes. The effects of calcination temperature, soaking time, pH, and nanoparticle dosage on dye adsorption were investigated to fabricate a reusable adsorbent. The mentioned dyes can be efficiently adsorbed over the γ-alumina nanoparticles if the calcination conditions, and pH are identified correctly. The powder calcined at 700 °C within 30 min inherently exhibited a high affinity towards blue dye at pH 5.0, while the proper adsorption towards red dye was achieved at pH 2.0. The maximal blue, and red dye adsorption capacities were determined to be 303, and 417 mg L−1, respectively. Although the calcination of boehmite at 1,000 °C led to the higher chemical resistance, the specific surface area significantly decreased from 202 to 126 m2 g−1, causing a significant drop in the adsorption of blue dye due to an increase in pore diameter, 6 nm. Importantly, the adsorptive performance of produced powder was stable with ten times thermal regeneration. Based on results obtained for the treatment of industrial textile wastewater, the fabricated γ-alumina powder is promising material to adsorb the anionic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Xie, K. Chen, H. Xie, C. Miao, M. Yu, F. Li, Y. Chen, X. Yang, P. Li and Q. J. Niu, Appl. Surf. Sci., 599, 153914 (2022).

    Article  CAS  Google Scholar 

  2. S. Zereshki, P. Daraei and A. Shokri, J. Hazard. Mater., 356, 1 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. T. T. Lamminmäki, J. P. Kettle, P. J. T. Puukko and P. A. C. Gane, Colloids Surf. A: Physicochem. Eng. Asp., 377(1–3), 304 (2011).

    Article  Google Scholar 

  4. F. Mcyotto, Q. Wei, D. K. Macharia, M. Huang, C. Shen and C. W. K. Chow, Chem. Eng. J., 405, 126674 (2021).

    Article  CAS  Google Scholar 

  5. Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng and X. Xiao, J. Environ. Manage., 299, 113589 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. M. Rezaei and Sh. Salem, Int. J. Chem. Kinet., 48(10), 573 (2016).

    Article  CAS  Google Scholar 

  7. H. Jabkhiro, K. E. Hassani, M. Chems and A. Anouar, Colloids Interface Sci. Commun., 45, 100549 (2021).

    Article  CAS  Google Scholar 

  8. W. Zhang, H. Li, X. Kan, L. Dong, H. Yan, Z. Jiang, H. Yang, A. Li and R. Cheng, Bioresour. Technol., 117, 40 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. D. Sun, X. Zhang, Y. Wu and X. Liu, J. Hazard. Mater., 181(1–3), 335 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. N. Atar, A. Olgun, S. Wang and S. Liu, J. Chem. Eng. Data, 56(3), 508 (2011).

    Article  CAS  Google Scholar 

  11. S. Şener, Chem. Eng. J., 138(1–3), 207 (2008).

    Article  Google Scholar 

  12. E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber and G. Morvan, Desalination, 275(1–3), 74 (2011).

    Article  CAS  Google Scholar 

  13. E. Alver and A. U. Metin, Chem. Eng. J., 200–202, 59 (2012).

    Article  Google Scholar 

  14. Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao and W. Ding, J. Hazard. Mater., 381, 120971 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. X. Zhang, Z. Li, S. Lin and P. Théato, ACS Appl. Mater. Interfaces, 12(18), 21100 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Li, F. Liu, H. Zhang, X. Li, X. Dong, G. Lu and C. Wang, Mater. Lett., 238, 183 (2019).

    Article  CAS  Google Scholar 

  17. T. M. F. Marques, D. A. Sales, L. S. Silva, R. D. S. Bezerra, M. S. Silva, J. A. Osajima, O. P. Ferreira, A. Ghosh, E. C. S. Filho, B. C. Viana and J. M. E. Matos, Appl. Surf. Sci., 512, 145659 (2020).

    Article  CAS  Google Scholar 

  18. P. Saharan, A. K. Sharma, V. Kumar and I. Kaushal, Mater. Chem. Phys., 221, 239 (2019).

    Article  CAS  Google Scholar 

  19. X. Yu, C. Wei, L. Ke, Y. Hu, X. Xie and H. Wu, J. Hazard. Mater., 180(1–3), 499 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. X. Y. Huang, X. Y. Mao, H. T. Bu, X. Y. Yu, G. B. Jiang and M. H. Zeng, Carbohydr. Res., 346(10), 1232 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. W. Konicki, I. Pełech, E. Mijowska and I. Jasińska, Chem. Eng. J., 210, 87 (2012).

    Article  CAS  Google Scholar 

  22. M. I. F. Macedo, C. A. Bertran and C. C. Osawa, J. Mater. Sci., 42, 2830 (2007).

    Article  CAS  Google Scholar 

  23. V. V. Danilevich, O. V. Klimov, K. A. Nadeina, E. Y. Gerasimov, S. V. Cherepanova, Y. V. Vatutina and A. S. Noskov, Superlattices Microstruct., 120, 148 (2018).

    Article  CAS  Google Scholar 

  24. F. Karouia, M. Boualleg, M. Digne and P. Alphonse, Adv. Powder Technol., 27(4), 1814 (2016).

    Article  CAS  Google Scholar 

  25. N. K. Renuka, A. V. Shijina and A. K. Praveen, Mater. Lett., 82, 42 (2012).

    Article  CAS  Google Scholar 

  26. K. Nadafi, M. Vosoughi, A. Asadi, M. O. Borna and M. Shirmardi, J. Water Chem. Technol., 36(3), 125 (2014).

    Article  Google Scholar 

  27. S. Banerjee, S. Dubey, R. K. Gautam, M. C. Chattopadhyaya and Y. C. Sharma, Arab. J. Chem., 12(8), 5339 (2019).

    Article  CAS  Google Scholar 

  28. A. H. Razm, A. Salem and Sh. Salem, J. Hazard. Mater., 429, 128259 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. M. Malakootian, H. Jafari Mansoorian, A. R. Hosseini and N. Khanjani, Process. Saf. Environ., 96, 125 (2015).

    Article  CAS  Google Scholar 

  30. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87(9–10), 1051 (2015).

    Article  CAS  Google Scholar 

  31. X. Zhang, P. L. Huestis, C. I. Pearce, J. Z. Hu, K. Page, L. M. Anovitz, A. B. Aleksandrov, M. P. Prange, S. Kerisit, M. E. Bowden, W. Cui, Z. Wang, N. R. Jaegers, T. R. Graham, M. Dembowski, H.-W. Wang, J. Liu, A. T. N’Diaye, M. Bleuel, D. F. R. Mildner, T. M. Orlando, G. A. Kimmel, J. A. La Verne, S. B. Clark and K. M. Rosso, ACS Appl. Nano Mater., 1, 7115 (2018).

    Article  CAS  Google Scholar 

  32. H. V. Gog, Appl. Surf. Sci., 541, 148501 (2021).

    Article  Google Scholar 

  33. S. Ali, Y. Abbas, Z. Zuhra and I. S. Butler, Nanoscale Adv., 1, 213 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Z. Aksu, Biochem. Eng. J., 7, 79 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. M. M. Mustafa, P. Jamal, M. Alkhatib, S. S. Mahmod, D. N. Jimat and N. N. Ilyas, Electron. J. Biotechn., 26, 7 (2017).

    Article  Google Scholar 

  36. A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer and A. Badiei, Powder Technol., 319, 60 (2017).

    Article  CAS  Google Scholar 

  37. G. B. Hong and Y. K. Wang, Appl. Surf. Sci., 423, 800 (2017).

    Article  CAS  Google Scholar 

  38. G. Bayramoglu, G. Celik and M. Y. Arica, J. Hazard. Mater., 137, 1689 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. G. Moussavi and M. Mahmoudi, J. Hazard. Mater., 168, 806 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. S. Pourrahim, A. Salem, Sh. Salem and R. Tavangar, Environ. Pollut., 256, 113454 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razm, A.H., Salem, A. & Salem, S. Preparation of thermally recyclable γ-alumina nanoparticles from boehmite for adsorption of anionic dyes: Spectrophotometric study, structural characterization and industrial experience. Korean J. Chem. Eng. 40, 863–872 (2023). https://doi.org/10.1007/s11814-022-1350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1350-6

Keywords

Navigation