Abstract
γ-Alumina powders were produced from the calcination of pseudo-boehmite for scavenging anionic blue (RS 150), and red (RB 133) dyes. The effects of calcination temperature, soaking time, pH, and nanoparticle dosage on dye adsorption were investigated to fabricate a reusable adsorbent. The mentioned dyes can be efficiently adsorbed over the γ-alumina nanoparticles if the calcination conditions, and pH are identified correctly. The powder calcined at 700 °C within 30 min inherently exhibited a high affinity towards blue dye at pH 5.0, while the proper adsorption towards red dye was achieved at pH 2.0. The maximal blue, and red dye adsorption capacities were determined to be 303, and 417 mg L−1, respectively. Although the calcination of boehmite at 1,000 °C led to the higher chemical resistance, the specific surface area significantly decreased from 202 to 126 m2 g−1, causing a significant drop in the adsorption of blue dye due to an increase in pore diameter, 6 nm. Importantly, the adsorptive performance of produced powder was stable with ten times thermal regeneration. Based on results obtained for the treatment of industrial textile wastewater, the fabricated γ-alumina powder is promising material to adsorb the anionic dyes.
Similar content being viewed by others
References
T. Xie, K. Chen, H. Xie, C. Miao, M. Yu, F. Li, Y. Chen, X. Yang, P. Li and Q. J. Niu, Appl. Surf. Sci., 599, 153914 (2022).
S. Zereshki, P. Daraei and A. Shokri, J. Hazard. Mater., 356, 1 (2018).
T. T. Lamminmäki, J. P. Kettle, P. J. T. Puukko and P. A. C. Gane, Colloids Surf. A: Physicochem. Eng. Asp., 377(1–3), 304 (2011).
F. Mcyotto, Q. Wei, D. K. Macharia, M. Huang, C. Shen and C. W. K. Chow, Chem. Eng. J., 405, 126674 (2021).
Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng and X. Xiao, J. Environ. Manage., 299, 113589 (2021).
M. Rezaei and Sh. Salem, Int. J. Chem. Kinet., 48(10), 573 (2016).
H. Jabkhiro, K. E. Hassani, M. Chems and A. Anouar, Colloids Interface Sci. Commun., 45, 100549 (2021).
W. Zhang, H. Li, X. Kan, L. Dong, H. Yan, Z. Jiang, H. Yang, A. Li and R. Cheng, Bioresour. Technol., 117, 40 (2012).
D. Sun, X. Zhang, Y. Wu and X. Liu, J. Hazard. Mater., 181(1–3), 335 (2010).
N. Atar, A. Olgun, S. Wang and S. Liu, J. Chem. Eng. Data, 56(3), 508 (2011).
S. Şener, Chem. Eng. J., 138(1–3), 207 (2008).
E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber and G. Morvan, Desalination, 275(1–3), 74 (2011).
E. Alver and A. U. Metin, Chem. Eng. J., 200–202, 59 (2012).
Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao and W. Ding, J. Hazard. Mater., 381, 120971 (2020).
X. Zhang, Z. Li, S. Lin and P. Théato, ACS Appl. Mater. Interfaces, 12(18), 21100 (2020).
Y. Li, F. Liu, H. Zhang, X. Li, X. Dong, G. Lu and C. Wang, Mater. Lett., 238, 183 (2019).
T. M. F. Marques, D. A. Sales, L. S. Silva, R. D. S. Bezerra, M. S. Silva, J. A. Osajima, O. P. Ferreira, A. Ghosh, E. C. S. Filho, B. C. Viana and J. M. E. Matos, Appl. Surf. Sci., 512, 145659 (2020).
P. Saharan, A. K. Sharma, V. Kumar and I. Kaushal, Mater. Chem. Phys., 221, 239 (2019).
X. Yu, C. Wei, L. Ke, Y. Hu, X. Xie and H. Wu, J. Hazard. Mater., 180(1–3), 499 (2010).
X. Y. Huang, X. Y. Mao, H. T. Bu, X. Y. Yu, G. B. Jiang and M. H. Zeng, Carbohydr. Res., 346(10), 1232 (2011).
W. Konicki, I. Pełech, E. Mijowska and I. Jasińska, Chem. Eng. J., 210, 87 (2012).
M. I. F. Macedo, C. A. Bertran and C. C. Osawa, J. Mater. Sci., 42, 2830 (2007).
V. V. Danilevich, O. V. Klimov, K. A. Nadeina, E. Y. Gerasimov, S. V. Cherepanova, Y. V. Vatutina and A. S. Noskov, Superlattices Microstruct., 120, 148 (2018).
F. Karouia, M. Boualleg, M. Digne and P. Alphonse, Adv. Powder Technol., 27(4), 1814 (2016).
N. K. Renuka, A. V. Shijina and A. K. Praveen, Mater. Lett., 82, 42 (2012).
K. Nadafi, M. Vosoughi, A. Asadi, M. O. Borna and M. Shirmardi, J. Water Chem. Technol., 36(3), 125 (2014).
S. Banerjee, S. Dubey, R. K. Gautam, M. C. Chattopadhyaya and Y. C. Sharma, Arab. J. Chem., 12(8), 5339 (2019).
A. H. Razm, A. Salem and Sh. Salem, J. Hazard. Mater., 429, 128259 (2022).
M. Malakootian, H. Jafari Mansoorian, A. R. Hosseini and N. Khanjani, Process. Saf. Environ., 96, 125 (2015).
M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87(9–10), 1051 (2015).
X. Zhang, P. L. Huestis, C. I. Pearce, J. Z. Hu, K. Page, L. M. Anovitz, A. B. Aleksandrov, M. P. Prange, S. Kerisit, M. E. Bowden, W. Cui, Z. Wang, N. R. Jaegers, T. R. Graham, M. Dembowski, H.-W. Wang, J. Liu, A. T. N’Diaye, M. Bleuel, D. F. R. Mildner, T. M. Orlando, G. A. Kimmel, J. A. La Verne, S. B. Clark and K. M. Rosso, ACS Appl. Nano Mater., 1, 7115 (2018).
H. V. Gog, Appl. Surf. Sci., 541, 148501 (2021).
S. Ali, Y. Abbas, Z. Zuhra and I. S. Butler, Nanoscale Adv., 1, 213 (2019).
Z. Aksu, Biochem. Eng. J., 7, 79 (2001).
M. M. Mustafa, P. Jamal, M. Alkhatib, S. S. Mahmod, D. N. Jimat and N. N. Ilyas, Electron. J. Biotechn., 26, 7 (2017).
A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer and A. Badiei, Powder Technol., 319, 60 (2017).
G. B. Hong and Y. K. Wang, Appl. Surf. Sci., 423, 800 (2017).
G. Bayramoglu, G. Celik and M. Y. Arica, J. Hazard. Mater., 137, 1689 (2006).
G. Moussavi and M. Mahmoudi, J. Hazard. Mater., 168, 806 (2009).
S. Pourrahim, A. Salem, Sh. Salem and R. Tavangar, Environ. Pollut., 256, 113454 (2020).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Razm, A.H., Salem, A. & Salem, S. Preparation of thermally recyclable γ-alumina nanoparticles from boehmite for adsorption of anionic dyes: Spectrophotometric study, structural characterization and industrial experience. Korean J. Chem. Eng. 40, 863–872 (2023). https://doi.org/10.1007/s11814-022-1350-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-022-1350-6