Skip to main content

Advertisement

Log in

Techno-economic analysis of CO2/steam co-electrolysis process and synfuel production process coupled with steel manufacturing process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Over the past few decades, reducing CO2 emissions has attracted attention at an industrial level worldwide. This study focuses on utilizing both the byproduct gas, including CO2, and waste heat produced from the steel-making process to produce synthetic fuel by integrating solid oxide electrolyzer cell (SOEC) technology with downstream Fischer-Tropsch and hydrocracking processes. CO2 can be collected from the byproduct gas and used as a feed for the SOEC, and waste heat from the steel-making process can be utilized as the main heat source for operation of the SOEC at high temperatures and to generate electrical power through heat recovery and steam generation (HRSG) as an energy source for the SOEC. The syngas (H2 and CO) produced from the SOEC is then converted to synthetic oil through the FT process, and the yield of the synthetic oil is increased via the hydrocracking process by converting heavy oil to lighter fractions. The entire process was modeled using Aspen HYSYS software, and pinch technology was adopted to maximize the energy efficiency of the process. As a result, CO2 release was reduced by 452 tons/day and syngas was produced by 336.8 tons/day. The syngas produced was then converted to synthetic oil (306.7 tons/day) and light gas (44.24 tons/day). Economic assessment was completed based on the discounted cash flow method for two cases: electricity tariffs and new renewable energy prices. When the electricity tariff is implemented, profit is achieved in seven years, whereas the system becomes profitable in four years when newly regenerated surplus energy is utilized. If the price of renewable energy is reduced, profits may be achieved earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Holappa, Metals, 10, 1117 (2020).

    Article  CAS  Google Scholar 

  2. V. Dieterich, A. Buttler, A. Hanel, H. Spliethoff and S. Fendt, Energy Environ. Sci., 13, 3207 (2020).

    Article  CAS  Google Scholar 

  3. J. K. Lee, S. Shin, G. J. Kwak, M. K. Lee, I. B. Lee and Y. S. Yoon, Energy Convers. Manag., 224, 113316 (2020).

    Article  CAS  Google Scholar 

  4. H. Xi, X. Wu, X. Chen and P. Sha, Appl. Energy, 295, 117069 (2021).

    Article  CAS  Google Scholar 

  5. R. Gao, C. Zhang, G. Kwak, Y. J. Lee, S. C. Kang and G. Guan, Energy Convers. Manag., 213, 112819 (2020).

    Article  CAS  Google Scholar 

  6. Y. Zeng, X. Xiao, J. Li, L, Sun, C. A. Floudas and H. Li, Energy, 143, 881 (2018).

    Article  CAS  Google Scholar 

  7. K. D. Ras, R. V. D. Vijver, V. V. Galvita, G. B. Marin and K. M. V. Geem, Curr. Opin. Chem. Eng., 26, 81 (2019).

    Article  Google Scholar 

  8. M. Czachor, C. J. Laycock, S. J. W. Carr, J. Maddy, G. Lloyd and A. J. Guwy, Energy Convers. Manag., 225, 113455 (2020).

    Article  CAS  Google Scholar 

  9. Q. Fu, C. Mabilat, M. Zahid, A. Brisse and L. Gautier, Energy Environ. Sci., 3, 1382 (2010).

    Article  CAS  Google Scholar 

  10. J. E. O’Brien, M. G. McKellar, C. M. Stoots, J. S. Herring and G. L. Hawkes, Int. J. Hydrog. Energy, 34, 4216 (2009).

    Article  Google Scholar 

  11. W. L. Becker, R. J. Braun, M. Penev and M. Melain, Energy, 47, 99 (2012).

    Article  CAS  Google Scholar 

  12. F. Salomone, E. Giglioa, D. Ferrero, M. Santarelli, R. Pirone and S. Bensaid, Chem. Eng. J., 377, 120233 (2019).

    Article  CAS  Google Scholar 

  13. J. H. Kim, NICE (News & Information for Chemical Engineers), 36, 171 (2018).

    Google Scholar 

  14. R. Q. Wang, L. Jing, Y. D. Wang and A. P. Roskilly, J. Clean. Prod., 274, 122997 (2020).

    Article  CAS  Google Scholar 

  15. M. Martin, Industrial chemical process analysis and design, Butterworth-Heinemann, Oxford (2016).

    Google Scholar 

  16. T. S. Lee, Numerical modeling and simulation of fischer-tropsch packed-bed reactor and its thermal management, Ph. D Thesis, University of Florida (2011).

  17. J. W. Ward, Fuel Process. Technol., 35, 55 (1993).

    Article  CAS  Google Scholar 

  18. C. Gambaro, V. Calemma, D. Molinari and J. Denayer, AIChE J., 57, 711 (2011).

    Article  CAS  Google Scholar 

  19. B. S. Lee, M. J. Park, Y. A. Kim, E. D. Park, J. S. Han, K. E. Jeong, C. U. Kim and S. Y. Jeong, Korean J. Chem. Eng., 31, 419 (2014).

    Article  CAS  Google Scholar 

  20. L. Pellegrini, S. Bonomi, S. Gamba, V. Calemma and D. Molinari, Chem. Eng. Sci., 62, 5013 (2007).

    Article  CAS  Google Scholar 

  21. G. F. Froment, Catal. Today, 1, 455 (1987).

    Article  CAS  Google Scholar 

  22. K. Abhinanyu and S. Shishir, Pet. Coal, 54, 59 (2012).

    Google Scholar 

  23. J. L. Hodala, J. S. Jung, E. H. Yang, G. H. Hong, Y. S. Noh and D. J. Moon, Fuel, 185, 339 (2016).

    Article  CAS  Google Scholar 

  24. I. C. Kemp, Pinch analysis and process integration: a user guide on process integration for the efficient use of energy, Butterworth-Heinemann, Oxford (2007).

    Google Scholar 

  25. S. Y. Im, J. J. Lee, Y. S. Jeon and H. T. Kim, KSFM, 19, 26 (2016).

    Google Scholar 

  26. J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen and A. Santasalo-Aarnio, J. CO2 Util., 39, 101166 (2020).

    Article  Google Scholar 

  27. W. L. Becker, M. Penev and R. J. Braun, J. Energy Resour. Technol., 141, 021901 (2019).

    Article  Google Scholar 

  28. R. Junsittiwate, T. R. Srinophakun and S. Sukpancharoen, Energy Sustain Dev., 66, 140 (2022).

    Article  Google Scholar 

  29. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few, Int. J. Hydrog. Energy, 42, 30470 (2017).

    Article  CAS  Google Scholar 

  30. L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden and E. Standen, Study on Development of Water Electrolysis in the EU, E4tech Sàrl with Element Energy Ltd, Lousanne, Switzerland (2014).

    Google Scholar 

  31. J. S. Kim, H. J. Lee, B. R. Lee, J. I. Kim, H. M. Oh, I. B. Lee, Y. S. Yoon and H. K. Lim, Energy Convers. Manag., 250, 114922 (2021).

    Article  CAS  Google Scholar 

  32. P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace and J. Jechura, Technical Report, NREL/TP-510-37408 (2005).

  33. A. Mivechian and M. Pakizeh, Korean J. Chem. Eng., 30, 937 (2013).

    Article  CAS  Google Scholar 

  34. G. Zang, P. Sun, A. A. Elgowainy, A. Bafana and M. Wang, J. CO2 Utill., 46, 101459 (2021).

    Article  CAS  Google Scholar 

  35. R. M. Swanson, A. Platon, J. A. Satrio, R. C. Brown and D. D. Hsu, Technical Report, NREL/TP-6A20-46587 (2010).

  36. A. Dutta, A. H. Sahir, E. Tan, D. Humbird, L. J. Snowden-Swan, P. A. Meyer, J. Ross, D. Sexton, R. Yap and J. Lukas, Technical Report, PNNL-23823 (2015).

  37. S. B. Jones, C. Valkenburt, C. W. Christie, D. C. Elliott, J. E. Holladay, D. J. Stevens, C. Kinchin and S. Czernik, Technical Report, PNNL-18284 Rev. 1 (2009).

  38. R. Davis, L. Tao, E. C. D. Tan, M. J. Biddy, G. T. Scarlata, J. Jacobson, K. Cafferty, J. Ross, J. Lukas, D. Knorr and P. Schoen, Technical Report, NREL/TP-5100-60223 (2013).

  39. M. M. Faruque, R. C. Baliban, J. A. Elia and C. A. Floudas, Ind. Eng. Chem. Res., 51, 15665 (2012).

    Article  Google Scholar 

  40. South Korea: General Guidelines for Preliminary Feasibility Study, Article 50 (1), Directive No. 436, April 25, 2019 enacted.

  41. L. March, Introduction to pinch technology, Targeting House, Gadbrook Park, Northwich, Cheshire, CW9 7UZ, England (1998).

    Google Scholar 

  42. International Renewable Energy Agency (IRENA), FUTURE OF SOLAR PHOTOVOLTAIC Deployment, investment, technology, grid integration and socio-economic aspects, A Global Energy Transformation paper (2019).

Download references

Acknowledgement

This study was funded by the Ministry of Trade, Industry, and Energy (MOTIE) and supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Republic of Korea (Project No. 20182010600400). This work was also supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008475, Development Program for Smart Digital Engineering Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Hwang.

Additional information

Declaration of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G.H., Lee, J., Cho, Y. et al. Techno-economic analysis of CO2/steam co-electrolysis process and synfuel production process coupled with steel manufacturing process. Korean J. Chem. Eng. 40, 740–753 (2023). https://doi.org/10.1007/s11814-022-1331-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1331-9

Keywords

Navigation