Skip to main content
Log in

Conductive double-network hydrogel composed of sodium alginate, polyacrylamide, and reduced graphene oxide

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Conductive hydrogels have garnered considerable attention as novel materials for biomedical devices and tissue engineering because they exhibit electroactivity and tissue-like softness. Various composites and manufacturing techniques have been developed in this regard. However, conductive hydrogels often exhibit poor mechanical properties (e.g., low toughness), which impedes their biomedical application. In this study, we fabricated double network (DN) hydrogels composed of sodium alginate (SA), polyacrylamide (PAAm), and graphene oxide (GO) to promote elasticity, toughness, and mechanical strength. Subsequently, we reduced the composite hydrogels to improve electrical conductivity by converting GO to more conductive reduced graphene oxide (rGO). The electrical, electrochemical, and mechanical properties of the produced hydrogels, r(GO/SA/PAAm), were characterized. Particularly, crosslinking density and reducing time were varied to obtain optimal conditions. The produced r(GO/SA/PAAm) demonstrated excellent electrical conductivity, mechanical strength, and toughness compared to homopolymers and unreduced DN hydrogels. We demonstrated that conductive DN hydrogels are suitable strain sensors. Electrically conductive and mechanically strong hydrogels will be beneficial in various biomedical applications, such as tissue engineering scaffolds and bioelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bahram, N. Mohseni and M. Moghtader, An introduction to hydrogels and some recent applications, IntechOpen (2016).

  2. E. M. Ahmed, J. Adv. Res., 6, 105 (2015).

    Article  CAS  Google Scholar 

  3. Q. Chai, Y. Jiao and X. Yu, Gels, 3, 1 (2017).

    Article  Google Scholar 

  4. H. Jeong, D. Y. Lee, D. H. Yang and Y. S. Song, Macromol. Res., 30, 223 (2022).

    Article  CAS  Google Scholar 

  5. K. Liu, S. Wei, L. Song, H. Liu and T. Wang, J. Agric. Food Chem., 68, 7269 (2020).

    Article  CAS  Google Scholar 

  6. J. Ren, X. Wang, A. Zhang, L. Zhang, L. Zhao, Y. Li and W. Yang, Macromol. Res., 28, 1253 (2020).

    Article  CAS  Google Scholar 

  7. W. Zhang, P. Feng, J. Chen, Z. Sun and B. Zhao, Prog. Polym. Sci., 88, 220 (2019).

    Article  CAS  Google Scholar 

  8. R. Kour, S. Arya, S. J. Young, V. Gupta, P. Bandhoria and A. Khosla, J. Electrochem. Soc., 167, 037555 (2020).

    Article  CAS  Google Scholar 

  9. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler and Tapash Chakraborty, Adv. Phys., 59, 261 (2010).

    Article  CAS  Google Scholar 

  10. A. Raslan, L. Saenz del Burgo, J. Ciriza and J. L. Pedraz, Int. J. Pharm., 580, 119226 (2020).

    Article  CAS  Google Scholar 

  11. R. K. Singh, R. Kumar and D. P. Singh, RSC Adv., 6, 64993 (2016).

    Article  CAS  Google Scholar 

  12. S. C. Ray, Applications of graphene and graphene-oxide based nanomaterials, William Andrew Publishing, Oxford (2015).

    Google Scholar 

  13. R. Yue, Y. Liu, S. Xia, S. Xu and S. Cao, Macromol. Res., 30, 477 (2022).

    Article  CAS  Google Scholar 

  14. K. Raidongia, A. T. L. Tan and J. Huang, in Carbon nanotubes and graphene (Second Edition), K. Tanaka and S. Iijima Eds., Elsevier, Oxford (2014).

  15. M. S. Kang, S. J. Jeong, S. H. Lee, B. Kim, S. W. Hong, J. H. Lee and D.-W. Han, Biomater. Res., 25, 4 (2021).

    Article  CAS  Google Scholar 

  16. H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.-H. Park, T. H. Yoon, M.-G. Kim and J. Y. Lee, Acta Biomater., 48, 100 (2017).

    Article  CAS  Google Scholar 

  17. L. H. Sperling, Interpenetrating polymer networks: An overview, In D. Klempner, L. H. Sperling and L. A. Utracki (Eds.), Interpenetrating Polymer Networks, American Chemical Society (1994).

  18. A. Lohani, G. Singh, S. S. Bhattacharya and A. Verma, J. Drug Deliv., 2014, 1 (2014).

    Article  Google Scholar 

  19. S. Naficy, S. Kawakami, S. Sadegholvaad, M. Wakisaka and G. M. Spinks, J. Appl. Polym. Sci., 130, 2504 (2013).

    Article  CAS  Google Scholar 

  20. T. Nakajima and J. P. Gong, in Encyclopedia of polymeric nanomaterials, S. Kobayashi and K. Müllen Eds., Springer, Berlin, Heidelberg (2015).

  21. J.-S. O and E.-J. Lee, Macromol. Res., 29, 383 (2021).

    Article  Google Scholar 

  22. S. Damiati, Macromol. Res., 28, 1046 (2020).

    Article  CAS  Google Scholar 

  23. Q. Chen, H. Chen, L. Zhu and J. Zheng, J. Mater. Chem. B, 3, 3654 (2015).

    Article  CAS  Google Scholar 

  24. X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin and L. Hou, Carbohydr. Polym., 186, 377 (2018).

    Article  CAS  Google Scholar 

  25. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio and M. S. Dresselhaus, Adv. Phys., 60, 413 (2011).

    Article  CAS  Google Scholar 

  26. M. M. Lucchese, F. Stavale, E. H. Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete and A. Jorio, Carbon, 48 1592 (2010).

    Article  CAS  Google Scholar 

  27. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  28. I. Childres, L. A. Jauregui, W. Park, H. Cao and Y. P. Chen, New Dev. Photon Mater. Res., 1, 403 (2013).

    Google Scholar 

  29. W. R. Runyan, Semiconductor measurements and instrumentation, McGraw-Hill, New York (1975).

    Google Scholar 

  30. M. Naftaly, S. Das, J. Gallop, K. Pan, F. Alkhalil, D. Kariyapperuma, S. Constant, C. Ramsdale and L. Hao, Electronics, 10, 960 (2021).

    Article  Google Scholar 

  31. S. Liu and L. Li, ACS Appl. Mater. Interfaces, 9, 26429 (2017).

    Article  CAS  Google Scholar 

  32. H. Li, H. Zheng, Y. J. Tan, S. B. Tor and K. Zhou, ACS Appl. Mater. Interfaces, 13, 12814 (2021).

    Article  CAS  Google Scholar 

  33. X. Qi, S. Simsek, B. Chen and J. Rao, Int. J. Biol. Macromol., 165, 1675 (2020).

    Article  CAS  Google Scholar 

  34. S. Lee, I. S. Jeon and J. Y. Jho, Macromol. Res., 30, 295 (2022).

    Article  CAS  Google Scholar 

  35. H. Shin, M.-Y. Lim, S. Kong, S. Kim, S. W. Lee, Y. Lee and J.-C. Lee, Macrocol. Res., 29, 487 (2021).

    Article  CAS  Google Scholar 

  36. R. Sabater i Serra, J. Molina-Mateo, C. Torregrosa-Cabanilles, A. Andrio-Balado, J. M. Meseguer Dueñas and Á. Serrano-Aroca, Polymers, 12, 702 (2020).

    Article  Google Scholar 

  37. Á. Serrano-Aroca, L. Iskandar and S. Deb, Eur. Polym. J., 103, 198 (2018).

    Article  CAS  Google Scholar 

  38. H. Zheng, J. Yang and S. Han, J. Appl. Polym. Sci., 133, 43616 (2016).

    Google Scholar 

  39. S. Park, K. Lee, G. Bozoklu, W. Cai, S. T. Nguyen and R. S. Ruoff, ACS Nano, 2, 572 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2021R1A4A3025206) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (HI14C3484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Lee.

Additional information

Credit Authorship Contribution Statement

Byongyeon Kim: Methodology, Investigation, Data curation, Writing — original draft, Formal analysis. Junggeon Park: Methodology, Investigation. Jae Young Lee: Conceptualization, Supervision, Writing — review & editing.

Conflict of Interest Statement

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Park, J. & Lee, J.Y. Conductive double-network hydrogel composed of sodium alginate, polyacrylamide, and reduced graphene oxide. Korean J. Chem. Eng. 40, 352–360 (2023). https://doi.org/10.1007/s11814-022-1311-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1311-0

Keywords

Navigation