Skip to main content

Advertisement

Log in

Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: From nanoparticle to single atom

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Li-CO2 batteries involve a spontaneous conversion reaction by injecting CO2 into a cathode, and reversibly store energy without additional energy input through a charging and discharging process, thereby achieving carbon neutrality. Noble metal-based electrocatalysts have been actively considered to efficiently facilitate the Li-CO2 reaction with reduced overvoltage, yet the use of expensive noble metal catalysts is a barrier to developing this type of Li-CO2 battery. Here, the importance of minimizing the size of noble metal particle-based catalysts for Li-CO2 batteries is reviewed and emphasized. Comparisons of the performance of Li-CO2 cells with noble metal catalysts, such as Ru and Ir, showed that overpotential is lower when particle sizes are reduced to the single atom-scale. This indicates that the smaller the particle-to-atomic scale, the greater the catalytic activity. Recent diverse studies based on nano- or atomic-scale Ru and Ir catalysts affecting catalytic activities of the Li-CO2 cell reaction are introduced. Other single atom catalyst candidates are also suggested for Li-CO2 battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Davies, M. Verde, O. Mnyshenko, Y. Chen, R. Rajeev, Y. Meng and G. Elliott, Nat. Energy, 4, 42 (2019).

    Article  Google Scholar 

  2. L. Zhang, Z. J. Zhao and J. Gong, Angew. Chem. Int. Ed., 56, 11326 (2017).

    Article  CAS  Google Scholar 

  3. J.-R. Youn, M.-J. Kim, S.-J. Lee, I.-S. Ryu, S. K. Jeong, K. Lee and S. G. Jeon, Korean J. Chem. Eng., 39, 2334 (2022).

    Article  CAS  Google Scholar 

  4. Y. Jia-xi, G. Dan, Q. You-wei and Z. Heng, Korean J. Chem. Eng., 39, 2010 (2022).

    Article  Google Scholar 

  5. J. H. Jeong, S. Kim, M.-J. Park and W. B. Lee, Korean J. Chem. Eng., 39, 1709 (2022).

    Article  CAS  Google Scholar 

  6. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah and P. Fennell, Energy Environ. Sci., 3, 1645 (2010).

    Article  CAS  Google Scholar 

  7. A. Mustafa, B. G. Lougou, Y. Shuai, S. Razzaq, Z. Wang, E. Shagdar and J. Zhao, J. Electrochem. Sci. Technol., 13, 148 (2022).

    Article  CAS  Google Scholar 

  8. B. J. Kim and S. W. Kang, Korean J. Chem. Eng., 39, 2542 (2022).

    Article  CAS  Google Scholar 

  9. H. Yamada, Polym. J., 53, 93 (2021).

    Article  Google Scholar 

  10. E. A. Parson and D. W. Keith, Science, 282, 1053 (1998).

    Article  CAS  Google Scholar 

  11. S. Kim and D. H. Jeong, Korean J. Chem. Eng., 39, 1999 (2022).

    Article  CAS  Google Scholar 

  12. J.-H. Kang, J. Lee, J.-W. Jung, J. Park, T. Jang, H.-S. Kim, J.-S. Nam, H. Lim, K. R. Yoon and W.-H. Ryu, ACS Nano, 14, 14549 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang, P. He and H. Zhou, Joule, 1, 359 (2017).

    Article  CAS  Google Scholar 

  14. J.-Y. Lee, H.-S. Kim, J.-S. Lee, C.-J. Park and W.-H. Ryu, ACS Sust. Chem. Eng., 7, 16151 (2019).

    Article  CAS  Google Scholar 

  15. H.-S. Kim, J.-Y. Lee, J.-K. Yoo and W.-H. Ryu, ACS Mater. Lett., 3, 815 (2021).

    Article  CAS  Google Scholar 

  16. Y.-J. Rho, B. Kim, K. Shin, G. Henkelman and W.-H. Ryu, J. Mater. Chem. A, 10, 19710 (2022).

    Article  CAS  Google Scholar 

  17. S. Xu, S. K. Das and L. A. Archer, RSC Adv., 3, 6656 (2013).

    Article  CAS  Google Scholar 

  18. L. Wang, W. Dai, L. Ma, L. Gong, Z. Lyu, Y. Zhou, J. Liu, M. Lin, M. Lai and Z. Peng, ACS Omega, 2, 9280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Liang, Y. Zhang, F. Chen, S. Jing, S. Yin and P. Tsiakaras, Appl. Catal. B: Environ., 244, 559 (2019).

    Article  CAS  Google Scholar 

  20. Y. Jiao, J. Qin, H. M. K. Sari, D. Li, X. Li and X. Sun, Energy Storage Mater., 34, 148 (2021).

    Article  Google Scholar 

  21. X. Hu, Z. Li and J. Chen, Angew. Chem., 129, 5879 (2017).

    Article  Google Scholar 

  22. Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei and Z. Zhou, Angew. Chem., 127, 6650 (2015).

    Article  Google Scholar 

  23. X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie, J. Wei and Z. Zhou, Chem. Commun., 51, 14636 (2015).

    Article  CAS  Google Scholar 

  24. Y. Liu, R. Wang, Y. Lyu, H. Li and L. Chen, Energy Environ. Sci., 7, 677 (2014).

    Article  CAS  Google Scholar 

  25. X. Li, S. Yang, N. Feng, P. He and H. Zhou, Chin. J. Catal., 37, 1016 (2016).

    Article  CAS  Google Scholar 

  26. Z. Zhao, J. Huang and Z. Peng, Angew. Chem. Int. Ed., 57, 3874 (2018).

    Article  CAS  Google Scholar 

  27. S. R. Gowda, A. Brunet, G. Wallraff and B. D. McCloskey, J. Phys. Chem. Lett., 4, 276 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon, J. Hong, W. A. Goddard III, H. Kim and K. Kang, J. Am. Chem. Soc., 135, 9733 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. C. Ling, R. Zhang, K. Takechi and F. Mizuno, J. Phys. Chem. C, 118, 26591 (2014).

    Article  CAS  Google Scholar 

  30. M.-K. Song, S. Park, F. M. Alamgir, J. Cho and M. Liu, Mater. Sci. Eng.: R: Rep., 72, 203 (2011).

    Article  Google Scholar 

  31. A. Ahmadiparidari, R. E. Warburton, L. Majidi, M. Asadi, A. Chamaani, J. R. Jokisaari, S. Rastegar, Z. Hemmat, B. Sayahpour and R. S. Assary, Adv. Mater., 31, 1902518 (2019).

    Article  CAS  Google Scholar 

  32. B. C. Kwon, N.-K. Park, M. Kang, D. Kang, M. W. Seo, D. Lee, S. G. Jeon and H.-J. Ryu, Korean J. Chem. Eng., 38, 1188 (2021).

    Article  CAS  Google Scholar 

  33. Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou, D. Shi, H. Liu, Y. Wu, W. Zhang and J. Chen, Adv. Funct. Mater., 27, 1700564 (2017).

    Article  Google Scholar 

  34. A. Hu, C. Shu, C. Xu, R. Liang, J. Li, R. Zheng, M. Li and J. Long, J. Mater. Chem. A, 7, 21605 (2019).

    Article  CAS  Google Scholar 

  35. R. Pipes, A. Bhargav and A. Manthiram, ACS Appl. Mater. Interfaces, 10, 37119 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Z. Zhang, Z. Zhang, P. Liu, Y. Xie, K. Cao and Z. Zhou, J. Mater. Chem. A, 6, 3218 (2018).

    Article  CAS  Google Scholar 

  37. Z. Zhang, W.-L. Bai, K.-X. Wang and J.-S. Chen, Energy Environ. Sci., 13, 4717 (2020).

    Article  CAS  Google Scholar 

  38. A. Suryatna, I. Raya, L. Thangavelu, F. R. Alhachami, M. M. Kadhim, U. S. Altimari, Z. H. Mahmoud, Y. F. Mustafa and E. Kianfar, J. Chem., 2022, 1 (2022).

    Article  Google Scholar 

  39. M. Rahman, X. Wang and C. Wen, J. Appl. Electrochem., 44, 5 (2014).

    Article  CAS  Google Scholar 

  40. Y. Mao, C. Tang, Z. Tang, J. Xie, Z. Chen, J. Tu, G. Cao and X. Zhao, Energy Storage Mater., 18, 405 (2019).

    Article  Google Scholar 

  41. Y. Qiao, S. Xu, Y. Liu, J. Dai, H. Xie, Y. Yao, X. Mu, C. Chen, D. J. Kline and E. M. Hitz, Energy Environ. Sci., 12, 1100 (2019).

    Article  CAS  Google Scholar 

  42. J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang and X.-B. Zhang, Nat. Commun., 4, 1 (2013).

    Google Scholar 

  43. C. Zhao, C. Yu, M. N. Banis, Q. Sun, M. Zhang, X. Li, Y. Liu, Y. Zhao, H. Huang and S. Li, Nano Energy, 34, 399 (2017).

    Article  CAS  Google Scholar 

  44. D. Su, D. Han Seo, Y. Ju, Z. Han, K. Ostrikov, S. Dou, H.-J. Ahn, Z. Peng and G. Wang, NPG Asia Mater., 8, e286 (2016).

    Article  Google Scholar 

  45. B. Sun, X. Huang, S. Chen, P. Munroe and G. Wang, Nano Lett., 14, 3145 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. B. Sun, S. Chen, H. Liu and G. Wang, Adv. Funct. Mater., 25, 4436 (2015).

    Article  CAS  Google Scholar 

  47. Q. Shi, C. Zhu, D. Du and Y. Lin, Chem. Soc. Rev., 48, 3181 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. J. Kim, H. E. Kim and H. Lee, ChemSusChem, 11, 104 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. J.-g. Choi, K. Ham, S. Bong and J. Lee, J. Electrochem. Sci. Technol., 13, 354 (2022).

    Article  CAS  Google Scholar 

  50. J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai and Z. Chen, Nature, 529, 377 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. C. Shu, C. Wu, J. Long, H. Guo, S.-X. Dou and J. Wang, Nano Energy, 57, 166 (2019).

    Article  CAS  Google Scholar 

  52. T. Liu, Z. Liu, G. Kim, J. T. Frith, N. Garcia-Araez and C. P. Grey, Angew. Chem., 129, 16273 (2017).

    Article  Google Scholar 

  53. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, Nat. Chem., 3, 634 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. F. Chen, G. Zhang, Y. Zhang, S. Cao and J. Li, J. Electrochem. Sci. Technol., 13, 362 (2022).

    Article  CAS  Google Scholar 

  55. W. Zhao, J. Wang, R. Yin, B. Li, X. Huang, L. Zhao and L. Qian, J. Colloid Interface Sci., 564, 28 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. J. Long, Z. Hou, C. Shu, C. Han, W. Li, R. Huang and J. Wang, ACS Appl. Mater. Interfaces, 11, 3834 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. H. Wang, H. Wang, J. Huang, X. Zhou, Q. Wu, Z. Luo and F. Wang, ACS Appl. Mater. Interfaces, 11, 44556 (2019).

    Article  CAS  Google Scholar 

  58. W. Zhao, X. Li, R. Yin, L. Qian, X. Huang, H. Liu, J. Zhang, J. Wang, T. Ding and Z. Guo, Nanoscale, 11, 50 (2019).

    Article  CAS  Google Scholar 

  59. J.-W. Jung, G.-Y. Kim, N.-W. Lee and W.-H. Ryu, Appl. Surf. Sci., 533, 147496 (2020).

    Article  CAS  Google Scholar 

  60. N.-W. Lee, K. R. Yoon, J.-Y. Lee, Y. Park, S.-J. Pyo, G.-Y. Kim, D.-H. Ha and W.-H. Ryu, ACS Appl. Energy Mater., 2, 3513 (2019).

    Article  CAS  Google Scholar 

  61. S. Kim, J. Park, J. Hwang and J. Lee, EnergyChem, 3, 100054 (2021).

    Article  CAS  Google Scholar 

  62. T. Chao, Y. Hu, X. Hong and Y. Li, ChemElectroChem, 6, 289 (2019).

    Article  CAS  Google Scholar 

  63. H. Lee, Y. J. Kim, Y. Sohn and C. K. Rhee, J. Electrochem. Sci. Technol., 12, 323 (2021).

    Article  CAS  Google Scholar 

  64. J. Jana, Y.-L. T. Ngo, J. S. Chung and S. H. Hur, J. Electrochem. Sci. Technol., 11, 220 (2020).

    Article  CAS  Google Scholar 

  65. H. S. Kim, B. Kim, H. Park, J. Kim and W. H. Ryu, Adv. Energy Mater., 12, 2103527 (2022).

    Article  CAS  Google Scholar 

  66. G.-Y. Kim, J. Lee, Y.-J. Rho, W.-H. Kim, M. Kim, J.-H. Ahn and W.-H. Ryu, Chem. Eng. J., 446, 136951 (2022).

    Article  CAS  Google Scholar 

  67. W.-H. Ryu, F. S. Gittleson, J. M. Thomsen, J. Li, M. J. Schwab, G. W. Brudvig and A. D. Taylor, Nat. Commun., 7, 1 (2016).

    Article  Google Scholar 

  68. B. E. Hayden, Accounts Chem. Res., 46, 1858 (2013).

    Article  CAS  Google Scholar 

  69. M. Shao, A. Peles and K. Shoemaker, Nano Lett., 11, 3714 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. S. Mukerjee, J. Appl. Electrochem., 20, 537 (1990).

    Article  CAS  Google Scholar 

  71. J. Hwang, Korean J. Chem. Eng., 38, 1104 (2021).

    Article  CAS  Google Scholar 

  72. G. Zheng, J. Yin, Z. Guo, S. Tian and X. Yang, J. Electrochem. Sci. Technol., 12, 458 (2021).

    Article  CAS  Google Scholar 

  73. G. Y. Kim, K. R. Yoon, K. Shin, J. W. Jung, G. Henkelman and W. H. Ryu, Small, 17, 2103755 (2021).

    Article  CAS  Google Scholar 

  74. Q. Zhang and J. Guan, Adv. Funct. Mater., 30, 2000768 (2020).

    Article  CAS  Google Scholar 

  75. N. Cheng, L. Zhang, K. Doyle-Davis and X. Sun, Electrochem. Energy Rev., 2, 539 (2019).

    Article  Google Scholar 

  76. C. X. Zhao, B. Q. Li, J. N. Liu and Q. Zhang, Angew. Chem. Int. Ed., 60, 4448 (2021).

    Article  CAS  Google Scholar 

  77. A. Wang, J. Li and T. Zhang, Nat. Rev. Chem., 2, 65 (2018).

    Article  CAS  Google Scholar 

  78. L. Zhang, Y. Ren, W. Liu, A. Wang and T. Zhang, National Sci. Rev., 5, 653 (2018).

    Article  CAS  Google Scholar 

  79. X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu and T. Zhang, Accounts Chem. Res., 46, 1740 (2013).

    Article  CAS  Google Scholar 

  80. S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang and O. M. Yaghi, Science, 349, 1208 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang and Y. Liang, Nat. Commun., 8, 1 (2017).

    Article  Google Scholar 

  82. H. Zhang, G. Liu, L. Shi and J. Ye, Adv. Energy Mater., 8, 1701343 (2018).

    Article  Google Scholar 

  83. R. Qin, P. Liu, G. Fu and N. Zheng, Small Methods, 2, 1700286 (2018).

    Article  Google Scholar 

  84. X. Guo, P. Liu, J. Han, Y. Ito, A. Hirata, T. Fujita and M. Chen, Adv. Mater., 27, 6137 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. F. Li, D. M. Tang, T. Zhang, K. Liao, P. He, D. Golberg, A. Yamada and H. Zhou, Adv. Energy Mater., 5, 1500294 (2015).

    Article  Google Scholar 

  86. Y.-C. Lu, H. A. Gasteiger and Y. Shao-Horn, J. Am. Chem. Soc., 133, 19048 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. C. A. Huff and M. S. Sanford, ACS Catal., 3, 2412 (2013).

    Article  CAS  Google Scholar 

  88. S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng, J.-j. Zhu and H. Zhou, Energy Environ. Sci., 10, 972 (2017).

    Article  CAS  Google Scholar 

  89. Y. Qiao, J. Wu, J. Zhao, Q. Li, P. Zhang, C. Hao, X. Liu, S. Yang and Y. Liu, Energy Storage Mater., 27, 133 (2020).

    Article  Google Scholar 

  90. S. Bie, M. Du, W. He, H. Zhang, Z. Yu, J. Liu, M. Liu, W. Yan, L. Zhou and Z. Zou, ACS Appl. Mater. Interfaces, 11, 5146 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Z. Lian, Y. Lu, C. Wang, X. Zhu, S. Ma, Z. Li, Q. Liu and S. Zang, Adv. Sci., 8, 2102550 (2021).

    Article  CAS  Google Scholar 

  92. J. Lin, J. Ding, H. Wang, X. Yang, X. Zheng, Z. Huang, W. Song, J. Ding, X. Han and W. Hu, Adv. Mater., 34, 2200559 (2022).

    Article  CAS  Google Scholar 

  93. B. Lu, Q. Liu and S. Chen, ACS Catal., 10, 7584 (2020).

    Article  CAS  Google Scholar 

  94. G. Liu, J. Xu, Y. Wang and X. Wang, J. Mater. Chem. A, 3, 20791 (2015).

    Article  CAS  Google Scholar 

  95. K. Guo, Y. Li, T. Yuan, X. Dong, X. Li and H. Yang, J. Solid State Electrochem., 19, 821 (2015).

    Article  CAS  Google Scholar 

  96. W. Zhou, Y. Cheng, X. Yang, B. Wu, H. Nie, H. Zhang and H. Zhang, J. Mater. Chem. A, 3, 14556 (2015).

    Article  CAS  Google Scholar 

  97. Y. Xing, Y. Yang, D. Li, M. Luo, N. Chen, Y. Ye, J. Qian, L. Li, D. Yang and F. Wu, Adv. Mater., 30, 1803124 (2018).

    Article  Google Scholar 

  98. C. Wang, Q. Zhang, X. Zhang, X. G. Wang, Z. Xie and Z. Zhou, Small, 14, 1800641 (2018).

    Article  Google Scholar 

  99. G. Wu, X. Li, Z. Zhang, P. Dong, M. Xu, H. Peng, X. Zeng, Y. Zhang and S. Liao, J. Mater. Chem. A, 8, 3763 (2020).

    Article  CAS  Google Scholar 

  100. H. Tian, A. Song, H. Tian, J. Liu, G. Shao, H. Liu and G. Wang, Chem. Sci., 12, 7656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen and Q. Peng, Adv. Mater., 30, 1705369 (2018).

    Article  Google Scholar 

  102. L. Liu, U. Diaz, R. Arenal, G. Agostini, P. Concepcion and A. Corma, Nat. Mater., 16, 132 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. P. Rao, D. Wu, Y.-Y. Qin, J. Luo, J. Li, C. Jia, P. Deng, W. Huang, Y. Su and Y. Shen, J. Mater. Chem. A, 10, 6531 (2022).

    Article  CAS  Google Scholar 

  104. L. Liu and A. Corma, Chem. Rev., 118, 4981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022M3J1A1085410). This work was partly supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20221B1010003B, Integrated High-Quality Technology Development of Remanufacturing Spent Cathode for Low Carbon Resource Recirculation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Hee Ryu.

Additional information

Prof. Won-Hee Ryu received his BS (2006) from department of metallurgical engineering at Yonsei University, Korea and MS (2007) & PhD (2012) from department of materials science and engineering at Korea Advanced Institute of Science and Technology (KAIST), Korea. During his PhD course, he worked as a visiting researcher in the electrochemical energy storage departaient at the Argonne National Laboratory, USA. Prof. Ryu did postdoctoral works at KAIST (2012–2013) and Yale University (2013–2016). He joined the faculty of the department of chemical and biological engineering at Sookmyung Women’s University (Seoul, Korea) as an assistant professor (2016) and currently work as an associate professor from 2021. Prof. Ryu has published more than 75 papers and 34 international and domestic patents. He has been recognized with several fellowship and awards including The NatureNet Science Fellows (2014–2016), The Korean Electrochemical Society (KECS) Park Sumun Award (2022), and Journal of Materials Chemistry A Emerging Investigators (2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rho, YJ., Yoo, Y.J. & Ryu, WH. Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: From nanoparticle to single atom. Korean J. Chem. Eng. 40, 461–472 (2023). https://doi.org/10.1007/s11814-022-1309-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1309-7

Keywords

Navigation