Skip to main content
Log in

Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polyamidoamine (PAMAM) dendrimer has received much attention as an alternative to polyethylenimine (PEI) for gene delivery due to the relatively low cytotoxicity. In general, low generational PAMAM dendrimers have better biocompatibility than high generational dendrimers but suffer reduced transfection efficiency. Transfection efficiency can be improved by the modification of the polymer with nuclear localization signal (NLS) peptides. In this study, we modified low generational cystamine core PAMAM dendrimers (cPAMAM, generation 0, 1 and 2) with a lactoferrin-derived nuclear localization signal (NLS) peptide and evaluated transfection efficiency and cytotoxicity as a function of the number of conjugated NLS peptides using NIH 3T3, MCF-7 and human dermal fibroblasts (HDFs). The transfection efficiency of NLS-modified cPAMAM G2 was the highest among the cPAMAM derivatives and similar or higher than PEI 25 kDa. The cytotoxicity of cPAMAM derivatives was generation-dependent and significantly lower than PEI 25 kDa. Our study indicates that cPAMAM G2 conjugated with NLS is a promising candidate for gene delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Cring and V. C. Sheffield, Gene Ther., 29, 3 (2020).

    Article  Google Scholar 

  2. M. Ramamoorth and A. Narvekar, J. Clin. Diagn., 9(1), GE01 (2015).

    Google Scholar 

  3. Y. Wang, K. F. Bruggeman, S. Franks, V. Gautam, S. I. Hodgetts, A. R. Harvey, R. J. Williams and D. R. Nisbet, Adv. Healthc. Mater., 10(1), 2001238 (2021).

    Article  CAS  Google Scholar 

  4. E. Ayuso, Mol. Ther. Methods Clin. Dev., 3, 15049 (2016).

    Article  Google Scholar 

  5. P. Wu, H. Chen, R. Jin, T. Weng, J. K. Ho, C. You, L. Zhang, X. Wang and C. Han, J. Transl. Med., 16(1), 1 (2018).

    Article  Google Scholar 

  6. C. Rinoldi, S. Zargarian, S. P. Nakielski, X. Li, A. Liguori, F. Petronella, D. Presutti, Q. Wang, M. Costantini and L. De Sio, Small Method., 5(9), 2100402 (2021).

    Article  CAS  Google Scholar 

  7. L. Zhu and R. I. Mahato, Expert Opin. Drug Deliv., 7(10), 1209 (2010).

    Article  CAS  Google Scholar 

  8. Y. Cheng, R. C. Yumul and S. H. Pun, Angew. Chem. Int. Ed., 55(39), 12013 (2016).

    Article  CAS  Google Scholar 

  9. Y. S. Lee and S. W. Kim, J. Control. Release, 190, 424 (2014).

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Li, K. Shao, R. Huang, L. Ye, J. Lou and C. Jiang, Biomaterials, 31(19), 5246 (2010).

    Article  CAS  Google Scholar 

  11. T. H. Kim, J. E. Ihm, Y. J. Choi, J. W. Nah and C. S. Cho, J. Control. Release, 93(3), 389 (2003).

    Article  CAS  Google Scholar 

  12. J. M. Benns, J.-S. Choi, R. I. Mahato, J.-S. Park and S. W. Kim, Bioconjug. Chem., 11(5), 637 (2000).

    Article  CAS  Google Scholar 

  13. U. Lächelt and E. Wagner, Chem. Rev., 115(19), 11043 (2015).

    Article  Google Scholar 

  14. J. Lee, J. Jung, Y.-J. Kim, E. Lee and J. S. Choi, Int. J. Pharm., 459(1–2), 10 (2014).

    Article  CAS  Google Scholar 

  15. K. Ma, M. X. Hu, Y. Qi, J. H. Zou, L. Y. Qiu, Y. Jin, X.-Y. Ying and H. Y. Sun, Biomaterials, 30(30), 6109 (2009).

    Article  CAS  Google Scholar 

  16. Y.M. Bae, H. Choi, S. Lee, S.H. Kang, Y.T. Kim, K. Nam, J.S. Park, M. Lee and J. S. Choi, Bioconjug. Chem., 18(6), 2029 (2007).

    Article  CAS  Google Scholar 

  17. J. S. Choi, K. S. Ko, J. S. Park, Y. H. Kim, S. W. Kim and M. Lee, Int. J. Pharm., 320(1–2), 171 (2006).

    Article  CAS  Google Scholar 

  18. T. Boulikas, Crit. Rev. Eukaryot. Gene Expr., 3(3), 193 (1993).

    CAS  Google Scholar 

  19. N. T. Pourianazar, P. Mutlu and U. Gunduz, J. Nanoparticle Res., 16(4), 1 (2014).

    Google Scholar 

  20. S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska and A. Szewczyk, Mol. Ther., 11(6), 990 (2005).

    Article  CAS  Google Scholar 

  21. X. Li, S. Hao, A. Han, Y. Yang, G. Fang, J. Liu and S. Wang, J. Mater. Chem. B, 7(25), 4008 (2019).

    Article  CAS  Google Scholar 

  22. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N. B. McKeown and A. D’emanuele, Int. J. Pharm, 252(1–2), 263 (2003).

    Article  CAS  Google Scholar 

  23. J. Haensler and F. C. Szoka Jr., Bioconjug. Chem., 4(5), 372 (1993).

    Article  CAS  Google Scholar 

  24. S. Kumari and A. K. Kondapi, Int. J. Biol. Macromol., 108, 401 (2018).

    Article  CAS  Google Scholar 

  25. S. Penco, S. Scarfi, M. Giovine, G. Damonte, E. Millo, B. Villaggio, M. Passalacqua, M. Pozzolini, C. Garrè and U. Benatti, Biotechnol. Appl. Biochem., 34(3), 151 (2001).

    Article  CAS  Google Scholar 

  26. J. Lee, S. Lee, Y. E. Kwon, Y. J. Kim and J. S. Choi, Macromole. Res., 27(4), 360 (2019).

    Article  CAS  Google Scholar 

  27. L. T. Thuy, S. Mallick and J. S. Choi, Int. J. Pharm., 492(1–2), 233 (2015).

    Article  CAS  Google Scholar 

  28. A. M. Wade and H. N. Tucker, J. Nutr. Biochem., 9(6), 315 (1998).

    Article  Google Scholar 

  29. A. Mecke, S. Uppuluri, T. M. Sassanella, D. K. Lee, A. Ramamoorthy, J. R. Baker Jr., G. O. Bradford and M. M. B. Holl, Chem. Phys. Lipids, 132(1), 3 (2004).

    Article  CAS  Google Scholar 

  30. A. J. Geall and I. S. Blagbrough, J. Pharm. Biomed., 22(5), 849 (2000).

    Article  CAS  Google Scholar 

  31. H. Eliyahu, Y. Barenholz and A. Domb, Molecules, 10(1), 34 (2005).

    Article  CAS  Google Scholar 

  32. B. D. Monnery, Biomacromolcules, 22(10), 4060 (2021).

    Article  CAS  Google Scholar 

  33. T. Bus, A. Traeger and U. S. Schubert, J. Mater. Chem. B, 6(43), 6904 (2018).

    Article  CAS  Google Scholar 

  34. S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik and E. Wagner, Gene Ther., 7(5), 401 (2000).

    Article  CAS  Google Scholar 

  35. A. Pantos, I. Tsogas and C. M. Paleos, Biochim. Biophys. Acta-Biomembr., 1778(4), 811 (2008).

    Article  CAS  Google Scholar 

  36. N. Sakai, T. Takeuchi, S. Futaki and S. Matile, ChemBioChem, 6(1), 114 (2005).

    Article  CAS  Google Scholar 

  37. H. Chang, J. Zhang, H. Wang, J. Lv and Y. Cheng, Biomacromolcules, 18(8), 2371 (2017).

    Article  CAS  Google Scholar 

  38. F. Wang, K. Hu and Y. Cheng, Acta Biomater., 29, 94 (2016).

    Article  CAS  Google Scholar 

  39. I. Tsogas, D. Tsiourvas, G. Nounesis and C. M. Paleos, Langmuir, 22(26), 11322 (2006).

    Article  CAS  Google Scholar 

  40. J. S. Choi, K. Nam, J. Y. Park, J. B. Kim, J. K. Lee and J. S. Park, J. Control. Release, 99(3), 445 (2004).

    Article  CAS  Google Scholar 

  41. N. Panté and M. Kann, J. Mol. Cell Biol., 13(2), 425 (2002).

    Article  Google Scholar 

  42. P. C. Naha, M. Davoren, F. M. Lyng and H. Byrne, Toxicol. Appl. Pharmacol., 246(1–2), 91 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was sponsored by the U.S. National Science Foundation and was accomplished under the Grant No. OIA-1757371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Jae Jeong.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2022_1293_MOESM1_ESM.pdf

Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kwon, YE., Guim, H. et al. Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier. Korean J. Chem. Eng. 40, 379–389 (2023). https://doi.org/10.1007/s11814-022-1293-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1293-y

Keywords

Navigation