Skip to main content
Log in

Phase equilibria and thermodynamic properties in the o-dichlorobenzene — m-dichlorobenzene system

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Rankine cycle is widely used in industry to convert heat to work using a working fluid. A mixture of o-and m-isomers of dichlorobenzene can act efficiently as a working fluid in the cycle. An equation of state (EoS) approach was chosen to model vapor-liquid equilibria and phase properties in the system. The best results were achieved with Tsai-Chen EoS. Experimental measurements of volumetric properties of mixtures and solid-liquid equilibria were performed. These data were correctly predicted within the ideal assumption. An enthalpy-pressure diagram for the o-dichlorobenzene — m-dichlorobenzene system was calculated using the resulting EoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

parameter of equation of state [Pa·m6/mol2]

ai :

parameter of equation of state for pure component [Pa·m6/mol2]

aij :

interaction parameters for mixture [Pa·m6/mol2]

A:

dimensionless parameter [-]

A* :

calibration coefficient

b:

parameter of equation of state [m3/mol]

bi :

parameter of equation of state for pure component [m3/mol]

B:

dimensionless parameter [-]

B* :

calibration coefficient

c:

parameter of equation of state [m3/mol]

ci :

parameter of equation of state for pure component [m3/mol]

cr:

crystal

C:

dimensionless parameter [-]

Cp :

isobaric heat capacity [J/(mol·K)]

DSC:

signal in differential scanning calorimetry [mW/mg]

f:

fugacity [Pa]

g:

Gibbs energy of phase [J/mol]

h:

enthalpy [kJ/kg]

kl :

parameter in Eq. (15)

k2 :

parameter in Eq. (15)

k3 :

parameter in Eq. (15)

kij :

binary interaction parameter [-]

m:

multiplier in expression for alpha-function [-]

M:

molecular weight [g/mol]

M* :

individual parameter of fluid [-]

MRD:

maximum relative deviation [%]

N:

number of data points [-]

N* :

individual parameter of fluid [-]

P:

pressure [Pa]

Psat :

pressure of saturated vapor [Pa]

R:

gas constant [J/(K*mol)]

S1/2 :

half-area of solidus peak [J/g]

T:

absolute temperature [K]

T:

liquidus temperature [K]

Tm :

melting point [K]

Tr :

reduced temperature [-]

Ts :

solidus temperature [K]

u:

standard uncertainty

v:

molar volume [m3/mol]

vE :

excess volume of a mixture [m3/mol]

w:

mass fraction [%]

z:

mole fraction [%]

Z:

compressibility factor [-]

α :

alpha-function [-]

ρ :

density of liquid [g/ml]

τ :

oscillation period [ms]

φ :

fugacity coefficient [-]

ω :

acentric factor [-]

Δhm :

enthalpy of fusion [kJ/mol]

1:

component 1

2:

component 2

c:

critical property

calc:

calculated

exp:

experimental

i:

component i

j:

component j

r:

relative

EoS:

equation of state

VT—EoS:

volume-translated equation of state

L:

liquid

V:

vapor

0:

reference state

References

  1. M. Moran, H. Shapiro, D. Boettner and M. Bailey, Fundamentals of engineering thermodynamics, 8th ed., Wiley, Hoboken (2014).

    Google Scholar 

  2. K. Sipilä, Advanced District Heating and Cooling (DHC) Systems. Chapter 3 — Cogeneration, biomass, waste to energy and industrial waste heat for district heating, 1st ed., Woodhead Publishing, Cambridge (2016).

    Google Scholar 

  3. G. Belov and M. Dorokhova, Sci. Educ. Bauman MSTU., 14, 99 (2014).

    Google Scholar 

  4. V. Pethurajan, S. Sivan and G. C. Joy, Energy Convers. Manag., 166, 474 (2018).

    Article  CAS  Google Scholar 

  5. N. A. Lai, M. Wendland and J. Fischer, Energy, 36, 199 (2011).

    Article  CAS  Google Scholar 

  6. U. Drescher and D. Bru, Appl. Therm. Eng., 27, 223 (2007).

    Article  CAS  Google Scholar 

  7. C. Sprouse and C. Depcik, Appl. Therm. Eng., 51, 711 (2013).

    Article  Google Scholar 

  8. M. Holik, M. Živić, Z. Virag, A. Barac, M. Vujanović and J. Avsec, Energy Convers. Manag., 232, 113897 (2021).

    Article  Google Scholar 

  9. D. A. Kosova, A. L. Voskov, N. A. Kovalenko and I. A. Uspenskaya, Fluid Phase Equilib., 425, 312 (2016).

    Article  CAS  Google Scholar 

  10. E. V. Belova, V. S. Krasnov, A. B. Ilyukhin and I. A. Uspenskaya, Thermochim. Acta, 668, 46 (2018).

    Article  CAS  Google Scholar 

  11. C. L. Young, C. A. Tran and D. W. Morton, J. Chem. Eng. Data, 62, 2953 (2017).

    Article  CAS  Google Scholar 

  12. D. W. Morton, M. P. W. Lui, C. A. Tran and C. L. Young, J. Chem. Eng. Data, 45, 437 (2000).

    Article  CAS  Google Scholar 

  13. B. E. Poling and J. M. Prausnitz, The properties of gases and liquids, 5th ed., McGraw-Hill, New York (2001).

    Google Scholar 

  14. R. Reid, J. Prausnitz and T. Sherwood, The properties of gases and liquids, 4th ed., McGraw-Hill, New York (1977).

    Google Scholar 

  15. K. Dayananda Reddy, M. Prabhakara Rao and M. Ramakrishna, Phys. Chem. Liq. An Int. J., 15, 59 (1985).

    Article  Google Scholar 

  16. A. J. Easteal, P. J. Back and L. A. Woolf, J. Chem. Eng. Data, 42, 1261 (1997).

    Article  CAS  Google Scholar 

  17. J. Sekar, P. Naidu and J. W. Acree, J. Chem. Eng. Data, 38, 167 (1993).

    Article  CAS  Google Scholar 

  18. S. S. Yadava, S. Singh, R. Bhan and N. Yadav, Korean J. Chem. Eng., 28, 256 (2011).

    Article  CAS  Google Scholar 

  19. S. S. Yadava, R. Bhan and N. Yadav, J. Solution Chem., 41, 926 (2012).

    Article  CAS  Google Scholar 

  20. R. R. Dreisbach, Physical properties of chemical compounds. advances in chemistry, Vol. 15, American Chemical Society, Washington (1961).

    Google Scholar 

  21. J. G. Baragi, M. I. Aralaguppi, T. M. Aminabhavi, M. Y. Kariduraganavar and S. S. Kulkarni, J. Chem. Eng. Data, 50, 917 (2005).

    Article  CAS  Google Scholar 

  22. W.-M. Melzer, W. Baldauf and H. Knapp, Chem. Eng. Process. Process Intensif., 26, 71 (1989).

    Article  CAS  Google Scholar 

  23. R. Raju, S. Ravikumar, K. Sivakumar, M. Raveendra and V. Pandiyan, Chem. Data Collect., 17–18, 41 (2018).

    Article  Google Scholar 

  24. W. Haynes, D. Lide and T. Bruno, CRC handbook of chemistry and physics, 95th ed., CRC PRESS, Boca Raton (2014).

    Book  Google Scholar 

  25. V. Syamala, D. Sekhar, K. Sivakumar and P. Venkateswarlu, Phys. Chem. Liq. An Int. J., 48, 171 (2010).

    Article  CAS  Google Scholar 

  26. K. Ramanjaneyulu, A. Krishnaiah and M. Ramakrishna, Fluid Phase Equilib., 40, 311 (1988).

    Article  CAS  Google Scholar 

  27. S. C. Bhatia, J. Sangwan, R. Rani and R. Bhatia, Int. J. Thermophys., 32, 2027 (2011).

    Article  CAS  Google Scholar 

  28. P. Góralski and H. Piekarski, J. Chem. Eng. Data, 52, 655 (2007).

    Article  Google Scholar 

  29. P. M. Reddy, K. Siva and P. Venkatesu, Fluid Phase Equilib., 310, 74 (2011).

    Article  CAS  Google Scholar 

  30. M. M. Mato, J. Balseiro, J. Salgado, E. Jime, L. Legido, M. M. Pin, F. De Ciencias and E.-A. Corun, J. Chem. Eng. Data, 47, 4 (2002).

    Article  CAS  Google Scholar 

  31. G. P. Chand, M. G. Sankar, P. N. V. V. L. P. Rani and C. Rambabu, J. Mol. Liq., 201, 1 (2015).

    Article  Google Scholar 

  32. P. V. Rao, T. S. Krishna, M. Gowri and K. Ravindhranath, J. Mol. Liq., 222, 873 (2016).

    Article  Google Scholar 

  33. V. Syamala, K. S. Kumar and P. Venkateswarlu, J. Chem. Thermodyn., 38, 1553 (2006).

    Article  CAS  Google Scholar 

  34. V. Syamala, L. Venkatramana, C. N. Rao, K. Sivakumar, P. Venkateswarlu and R. L. Gardas, Fluid Phase Equilib., 397, 68 (2015).

    Article  CAS  Google Scholar 

  35. P. Vasundhara, C. N. Rao, L. Venkatramana, K. Sivakumar, P. Venkateswarlu and R. L. Gardas, J. Mol. Liq., 202, 158 (2015).

    Article  CAS  Google Scholar 

  36. L. Venkatramana, K. Sivakumar, V. Govinda and K. D. Reddy, J. Mol. Liq., 186, 163 (2013).

    Article  CAS  Google Scholar 

  37. G. Towler and R. Sinnott, Chemical engineering design principles, practice and economics of plant and process design, Butterworth-Heinemann, Oxford (2012).

    Google Scholar 

  38. F. M. Jaeger, Zeitschrift Für Anorg. Und Allg. Chemie., 101, 1 (1916).

    Google Scholar 

  39. V. C. Kumar, B. Sreenivasulu and P. R. Naidu, J. Chem. Eng. Data, 38, 414 (1993).

    Article  CAS  Google Scholar 

  40. J. Rajasekar and P. R. Naidu, J. Chem. Eng. Data, 41, 373 (1996).

    Article  CAS  Google Scholar 

  41. J. Rajasekhar and K. Sivakumar, Fluid Phase Equilib., 245, 149 (2006).

    Article  CAS  Google Scholar 

  42. A. Vogel, J. Chem. Soc., 644 (1948).

  43. R. McDonald, S. Shrader and D. Stull, J. Chem. Eng. Data, 4, 311 (1959).

    Article  CAS  Google Scholar 

  44. B. T. Grayson and L. A. Fosbraey, Pestic. Sci., 13, 269 (1982).

    Article  CAS  Google Scholar 

  45. K. Liu and R. M. Dickhut, Chemosphere, 29, 581 (1994).

    Article  CAS  Google Scholar 

  46. C. F. Fisk and W. A. Noyes, J. Am. Chem. Soc., 58, 1707 (1936).

    Article  CAS  Google Scholar 

  47. D. R. Stull, Ind. Eng. Chem., 39, 517 (1947).

    Article  CAS  Google Scholar 

  48. R. R. Dreisbach and S. A. Shrader, Ind. Eng. Chem., 41, 2879 (1949).

    Article  CAS  Google Scholar 

  49. M. Poledníček, T. Guetachew, J. Jose, V. Růžička, V. Roháč and M. Zábranský, ELDATA: The Int. Electron. J. Physico-Chemical Data, 2, 41 (1996).

    Google Scholar 

  50. V. Roháč, V. Růžička, K. Růžička and K. Aim, J. Chem. Eng. Data, 43, 770 (1998).

    Article  Google Scholar 

  51. D. Mackay, W. Y. Shiu, K. C. Ma and S. C. Lee, Handbook of physical-chemical properties and environmental fate for organic chemicals: Volume I: Introduction and hydrocarbons, CRC Press, Boca Raton (2006).

    Book  Google Scholar 

  52. S. P. Verevkin, V. N. Emel’yanenko, M. A. Varfolomeev, B. N. Solomonov, K. V. Zherikova and S. V. Melkhanova, J. Phys. Chem. B, 118, 14479 (2014).

    Article  CAS  Google Scholar 

  53. R. Tanaka and G. C. Benson, J. Chem. Eng. Data, 24, 37 (1979).

    Article  CAS  Google Scholar 

  54. M. Lipovská, H. G. Schmidt, V. Roháč, V. Růžička, G. Wolf and M. Zábranský, J. Therm. Anal. Calorim., 68, 753 (2002).

    Article  Google Scholar 

  55. V. Roháč, V. Růžička, K. Růžička, M. Poledníček, K. Aim, J. Jose and M. Zábranský, Fluid Phase Equilib., 157, 121 (1999).

    Article  Google Scholar 

  56. W. E. Acree, Thermochim. Acta, 189, 37 (1991).

    Article  CAS  Google Scholar 

  57. D. Wei, Thermochim. Acta, 479, 32 (2008).

    Article  CAS  Google Scholar 

  58. J. Timmermans, Bull. Soc. Chim. Belg., 44, 17 (1935).

    CAS  Google Scholar 

  59. J. Narbutt, Z. Elektrochem., 24, 339 (1918).

    Google Scholar 

  60. U. Domańska and T. M. Letcher, J. Chem. Thermodyn., 32, 1635 (2000).

    Article  Google Scholar 

  61. J. R. Donnelly, L. A. Drewes, R. L. Johnson, W. D. Munslow, K. K. Knapp and G. W. Sovocool, Thermochim. Acta, 167, 155 (1990).

    Article  CAS  Google Scholar 

  62. C. R. Witschonke, Anal. Chem., 26, 562 (1954).

    Article  CAS  Google Scholar 

  63. P. Basařová and V. Svoboda, Fluid Phase Equilib., 68, 13 (1991).

    Article  Google Scholar 

  64. R. M. Stephenson and S. Malanowski, Handbook of the thermodynamics of organic compounds, Elsevier, New York (1987).

    Book  Google Scholar 

  65. Physical Property Data Bank. Appendix C.

  66. R. Kalluru and K. Abburi, Fluid Phase Equilib., 40, 311 (1988).

    Article  Google Scholar 

  67. G. Soave, Chem. Eng. Sci., 27, 1197 (1972).

    Article  CAS  Google Scholar 

  68. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem., Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  69. J. Gmehling, M. Kleiber, B. Kolbe and J. Rarey, Chemical thermodynamics for process simulation, 2nd ed., Wiley, New Jersey (2019).

    Book  Google Scholar 

  70. A. Péneloux, E. Rauzy and R. Fréze, Fluid Phase Equilib., 8, 7 (1982).

    Article  Google Scholar 

  71. F. Young, F. L. P. Pessoa and V. R. R. Ahón, Fluid Phase Equilib., 435, 73 (2017).

    Article  CAS  Google Scholar 

  72. J.-C. Tsai and Y.-P. Chen, Fluid Phase Equilib., 145, 193 (1998).

    Article  CAS  Google Scholar 

  73. C. H. Whitson and M. Brulé, Phase behavior, Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, Richardson (2000).

    Google Scholar 

  74. https://www.e-education.psu.edu/png520/.

  75. M. S. Ding, K. Xu and T. R. Jow, J. Therm. Anal. Calorim., 62, 177 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed in the frame of theme «Chemical Thermodynamics and Theoretical Material Science».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Samukov.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samukov, K., Maksimov, A., Belova, E. et al. Phase equilibria and thermodynamic properties in the o-dichlorobenzene — m-dichlorobenzene system. Korean J. Chem. Eng. 39, 3412–3421 (2022). https://doi.org/10.1007/s11814-022-1291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1291-0

Keywords

Navigation