Skip to main content
Log in

Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This research involves the influence of tank scale and, additionally, stirrer speed, the volumetric gas flow rate, the sucrose concentration in aqueous solution, and the yeast suspension concentration on the hydrodynamics of gas-liquid and gas-biophase-liquid systems. A stirred tank with internal diameters of T=0.288 m, and T=0.634 m was filled with a liquid to the height H=T. For measurements, two high-speed stirrers were used: a Rushton turbine stirrer (RT) and A 315 stirrer. The study was carried out for gas-liquid and biophase-gas-liquid systems, where the biophase was a suspension of Saccharomyces cerevisiae yeast, the gas phase was air, and the liquid phase was an aqueous solution of sucrose. The gas hold-up and power consumption depend on the scale of the tank. The experimental results were mathematically described. Eqs. (14)–(18) do not have equivalents in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Stręk, Agitation and agitated vessels (in Polish), WNT, Warszawa (1981)

    Google Scholar 

  2. J. Kamieński, Agitation of multiphase systems (in Polish), WNT, Warszawa (2004).

    Google Scholar 

  3. R. Adamiak and J. Karcz, Chem. Pap., 61, 16 (2007).

    Article  CAS  Google Scholar 

  4. P. R. Gogate, A. A. C. M. Beenackers and A. B. Pandit, Biochem. Eng. J., 6, 109 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. M. Nocentini, D. Fajner, G. Pasquali and F. Magelli, Ind. Eng. Chem. Res., 32, 19 (1993).

    Article  CAS  Google Scholar 

  6. D. Pinelli, M. Nocentini and F. Magelli, IChemESymp., 136, 81 (1994).

    CAS  Google Scholar 

  7. J. Karcz, Inż. Chem. i Proc., 19, 335 (1998).

    CAS  Google Scholar 

  8. A. Paglianti, K. Takenaka, W. Bujalski and K. Takahashi, Can. J. Chem. Eng., 78, 386 (2000).

    Article  CAS  Google Scholar 

  9. S. G. Mueller and M. P. Dudukovic, Ind. Eng. Chem. Res., 49, 10744 (2010).

    Article  CAS  Google Scholar 

  10. A. Busciglio, F. Grisafi, F. Scargiali and A. Brucata, Chem. Eng. Sci., 102, 551 (2013).

    Article  CAS  Google Scholar 

  11. X. Wan, Y. Takahata and K. Takahashi, Chem. Pap., 70, 445 (2016).

    Article  CAS  Google Scholar 

  12. A. Jamshed, M. Cooke, Z. Ren and T. L. Rodgers, Chem. Eng. Res. Des., 133, 55 (2018).

    Article  CAS  Google Scholar 

  13. P. Vrábel, R. G. J. M. van der Lans, K. Ch. A. M. Luyben, L. Boon and A. W. Nienow, Chem. Eng. Sci., 55, 5881 (2000).

    Article  Google Scholar 

  14. S. Foucault, G. Ascanio and P. A. Tanguy, Chem. Eng. Tech., 27, 324 (2004).

    Article  CAS  Google Scholar 

  15. F. Cabaret, L. Fradette and P. A. Tanguy, Chem. Eng. Tech., 31, 1806 (2008).

    Article  CAS  Google Scholar 

  16. H. Zhu, A. W. Nienow, W. Bujalski and M. J. H. Simmons, Chem. Eng. Res. Des., 87, 307 (2009).

    Article  CAS  Google Scholar 

  17. M. L. Collignon, A. Delafosse, M. Crine and D. Toye, Chem. Eng. Sci., 65, 5929 (2010).

    Article  CAS  Google Scholar 

  18. R. Gelves, A. Dietrich and R. Takors, Bioprocess. Biosyst. Eng., 37, 365 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. S. Yang, X. Li, G. Deng, Ch. Yang and Z. Mao, Chin. J. Chem. Eng., 22, 1072 (2014).

    Article  CAS  Google Scholar 

  20. G. Montante and A. Paglianti, Chem. Eng. J., 279, 648 (2015).

    Article  CAS  Google Scholar 

  21. B. Liu, Q. Xiao, N. Sun, P. Gao, F. Fan and B. Sunden, Chem. Eng. Res. Des., 145, 314 (2019).

    Article  CAS  Google Scholar 

  22. F. Qiu, Z. Liu, R. Liu, X. Quan, Ch. Tao and Y. Wang, Chin. J. Chem. Eng., 27, 278 (2019).

    Article  CAS  Google Scholar 

  23. F. Garcia-Ochoa, E. Gomez and V. E. Santos, Biochem. Eng. J., 164, 107803 (2020).

    Article  CAS  Google Scholar 

  24. S. Jegatheeswaran and F. Ein-Mozaffari, Chem. Eng. J., 383, 123118 (2020).

    Article  CAS  Google Scholar 

  25. Y. Xiao, X. Li, S. Ren, Z. Mao and C. Yang, Chem. Eng. Sci., 227, 115923 (2020).

    Article  CAS  Google Scholar 

  26. S. Jegatheeswaran and F. Ein-Mozaffari, Chem. Eng. Process.: Process Intensif., 156, 108091 (2020).

    Article  CAS  Google Scholar 

  27. M. Amiraftabi, M. Khiadani, H. A. Mohammed and A. Arshad, Sep. Purif. Technol., 272, 118855 (2021).

    Article  CAS  Google Scholar 

  28. F. Maluta, A. Paglianti and G. Montante, Biochem. Eng. J., 166, 107867 (2021).

    Article  CAS  Google Scholar 

  29. G. Nadal-Rey, D. D. McClure, J. M. Kavanagh, B. Cassells, S. Cornelissen, D. F. Fletcher and K. V. Gernaey, Biochem. Eng. J., 177, 108265 (2022).

    Article  CAS  Google Scholar 

  30. P. A. Barros, F. Ein-Mozaffari and A. Lohi, Processes, 10, 275 (2022).

    Article  Google Scholar 

  31. A. S. Khare and K. Niranjan, Chem. Eng. Process., 43, 571 (2004).

    Article  CAS  Google Scholar 

  32. J. Karcz and R. Siciarz, Inż. Chem. i Proc., 25, 1075 (2004).

    CAS  Google Scholar 

  33. A. R. Rao and B. Kumar, Korean J. Chem. Eng., 25, 1338 (2008).

    Article  CAS  Google Scholar 

  34. G. Chinnasamy, S. Kaliannan, A. Eldho and D. Nadarajan, Korean J. Chem. Eng., 33, 1181 (2016).

    Article  CAS  Google Scholar 

  35. L. Li, J. Wang, L. Feng and X. Gu, Korean J. Chem. Eng., 34, 2811 (2017).

    Article  CAS  Google Scholar 

  36. R. Petricek, T. Moucha, F. J. Rejl, L. Valenz, J. Haidl and T. Cmelikova, Int. J. Heat Mass Transf., 124, 1117 (2018).

    Article  Google Scholar 

  37. M. Cudak, Chem. Process. Eng., 41, 241 (2020).

    Google Scholar 

  38. A. S. Khare and K. Niranjan, Chem. Eng. Sci., 54, 1093 (1999).

    Article  CAS  Google Scholar 

  39. J. M. T. Vasconcelos, S. C. P. Orvalho, A. M. A. F. Rodrigues and S. S. Alves, Ind. Eng. Chem. Res., 39, 203 (2000).

    Article  CAS  Google Scholar 

  40. A. S. Khare and K. Niranjan, Chem. Eng. Process., 41, 239 (2002).

    Article  CAS  Google Scholar 

  41. A. A. Yawalkar, A. B. M. Heesing, G. F. Versteeg and V. G. Pangarkar, J. Chem. Eng., 80, 791 (2002).

    CAS  Google Scholar 

  42. T. Moucha, V. Linek and E. Prokopova, Chem. Eng. Sci., 58, 1839 (2003).

    Article  CAS  Google Scholar 

  43. D. Pinelli, A. Bakker, K. J. Myers, M. F. Reeder and F. Magelli, Chem. Eng. Res. Des., 81, 448 (2003).

    Article  CAS  Google Scholar 

  44. J. Karcz, R. Siciarz and I. Bielka, Chem. Pap., 58, 404 (2004).

    CAS  Google Scholar 

  45. L. Zhang, Q. Pan and G. L. Rempel, Ind. Eng. Chem. Res., 44, 5304 (2005).

    Article  CAS  Google Scholar 

  46. L. Rudolph, M. Schafer, V. Atiemo-Obeng and M. Kraume, Chem. Eng. Res. Des., 85, 568 (2007).

    Article  CAS  Google Scholar 

  47. M. Cudak, Przem. Chem., 90, 1628 (2011).

    CAS  Google Scholar 

  48. M. Rahimi, S. Amraei and A. A. Alsairafi, Korea. J. Chem. Eng., 28, 1372 (2011).

    Article  CAS  Google Scholar 

  49. M. Major-Godlewska and J. Karcz, Chem. Pap., 65, 132 (2011).

    Article  CAS  Google Scholar 

  50. Y. Bao, J. Yang, L. Chen and Z. Gao, Ind. Eng. Chem. Res., 51, 12411 (2012).

    Article  CAS  Google Scholar 

  51. M. Cudak, Chem. Process. Eng., 35, 97 (2014).

    Article  CAS  Google Scholar 

  52. M. Xie, J. Xia, Z. Zhou, J. Chu, Y. Zhuang and S. Zhang, Ind. Eng. Chem. Res., 53, 5941 (2014).

    Article  CAS  Google Scholar 

  53. M. Cudak, Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa (2016).

    Google Scholar 

  54. A. Busciglio, M. Opletal, T. Moucha, G. Montante and A. Paglianti, Chem. Eng. Trans., 57, 1273 (2017).

    Google Scholar 

  55. M. Major-Godlewska and D. Radecki, Pol. J. Chem. Tech., 20, 7 (2018).

    Article  CAS  Google Scholar 

  56. B. Liu, Y. Zheng, R. Cheng, Z. Xu, M. Wang and Z. Jin, Chin. J. Chem. Eng., 26, 1785 (2018).

    Article  CAS  Google Scholar 

  57. M. Jamshidzadeh, F. Ein-Mozaffari and A. Lohi, AIChE J., 66, e17016 (2020).

    Article  CAS  Google Scholar 

  58. A. A. Yawalkar, V. G. Pangarkar and A. C. M. Beenackers, Can. J. Chem. Eng., 80, 158 (2002).

    Article  CAS  Google Scholar 

  59. S. D. Vlaev, M. D. Valeva and R. Mann, Chem. Eng. J., 87, 21 (2002).

    Article  CAS  Google Scholar 

  60. F. Garcia-Ochoa and E. Gomez, Chem. Eng. Sci., 59, 2489 (2004).

    Article  CAS  Google Scholar 

  61. L. Zhang, Q. Pan and G. L. Rempel, Chem. Eng. Sci., 61, 6189 (2006).

    Article  CAS  Google Scholar 

  62. L. Li and B. Xu, Korea. J. Chem. Eng., 33, 2007 (2016).

    Article  CAS  Google Scholar 

  63. F. Khalili, M. R. J. Nasr, A. Kazemzadeh and F. Ein-Mozaffari, J. Chem. Technol. Biotechnol., 93, 340 (2018).

    Article  CAS  Google Scholar 

  64. M. Amiraftabi, M. Khiadani and H. A. Mohammed, Chem. Eng. Process.: Process Intensif., 148, 107811 (2020).

    Article  CAS  Google Scholar 

  65. M. Jamshidzadeh, A. Kazemzadeh, F. Ein-Mozaffari and A. Lohi, Chem. Eng. J., 401, 126002 (2020).

    Article  CAS  Google Scholar 

  66. R. Newell and S. Grano, Int. J. Miner. Process., 81, 224 (2007).

    Article  CAS  Google Scholar 

  67. A. S. Khare and K. Niranjan, Chem. Eng. Sci., 50, 1091 (1995).

    Article  CAS  Google Scholar 

  68. Y. Kawase, K. Shimizu, T. Araki and T. Shimodairam, Ind. Eng. Chem. Res., 36, 270 (1997).

    Article  CAS  Google Scholar 

  69. N. Dohi, Y. Matsuda, N. Itano, K. Shimizu, K. Minekawa and Y. Kawase, Chem. Eng. Commun., 171, 211 (1999).

    Article  CAS  Google Scholar 

  70. N. Dohi, Y. Matsuda, N. Itano, K. Minekawa, T. Takahashi and Y. Kawase, Can. J. Chem. Eng., 79, 107 (2001).

    Article  CAS  Google Scholar 

  71. N. Dohi, T. Takahashi, K. Minekawa and Y. Kawase, Chem. Eng. J., 97, 103 (2004).

    Article  CAS  Google Scholar 

  72. P. Tervasmaki, M. Latva-Kokko, S. Taskila and J. Tanskanen, Food Bioprod. Process., 111, 129 (2018).

    Article  CAS  Google Scholar 

  73. A. Kiełbus-Rąpała and J. Karcz, Chem. Pap., 64, 154 (2010).

    Article  Google Scholar 

  74. M. Major-Godlewska and J. Karcz, Chem. Pap., 66, 566 (2012).

    Article  CAS  Google Scholar 

  75. T. T. Devi and B. Kumar, Thermophys. Aeromech., 21, 365 (2014).

    Article  Google Scholar 

  76. J.-Y. Xia, Y.-H. Wang, S.-L. Zhang, N. Chen, P. Yin, Y.-P. Zhung and J. Chu, Biochem. Eng. J., 43, 252 (2009).

    Article  CAS  Google Scholar 

  77. J. Karcz, M. Cudak and J. Szoplik, Chem. Eng. Sci., 60, 2369 (2005).

    Article  CAS  Google Scholar 

  78. S. S. Alves, C. I. Maia, J. M. T. Vasconcelos, In proceedings of the 11th european conference on mixing, Bamberg, Germany (2003)

  79. G. B. Tatterson, Scaleup and design of industrial mixing processes, McGraw-Hill Inc., New York (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magdalena Cudak or Rafał Rakoczy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cudak, M., Rakoczy, R. Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. Korean J. Chem. Eng. 39, 2959–2971 (2022). https://doi.org/10.1007/s11814-022-1281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1281-2

Keywords

Navigation