Skip to main content
Log in

Cryopreservable three-dimensional spheroid culture for ready-to-use systems

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) spheroid culture has applications in many fields as spheroids closely recapitulate physiological conditions. However, spheroid culture and maintenance are time-consuming and unsuitable for urgent situations; therefore, appropriate cryopreservation methods for spheroids are required for their use in an on-demand and ready-to-use manner. We hypothesized that the feasibility of a ready-to-use system relies on diffusion of the preservation solution within spheroids; we thus evaluated the effects of spheroid-forming parameters, such as cell number and culture period, on spheroid viability and functionality. Long-term spheroid culture for seven days interfered with penetration of the cryopreservation solution as it caused cell condensation and extracellular matrix (ECM) secretion, as well as low viability and migratory activity upon replating after storage. However, ready-to-use spheroids, which were cultured for one day and then cryopreserved, showed viability and migration similar to those of non-cryopreserved spheroids, confirming that a short incubation period was suitable for this system. The chondrocyte-based ready-to-use spheroid system designed in this study can be easily applied to regenerative medicine applications that require a large number of cells in the future and can provide information for applying the ready-to-use spheroid system to various cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chaicharoenaudomrung, P. Kunhorm and P. Noisa, World J. Stem Cells, 11, 1065 (2019).

    Article  Google Scholar 

  2. W. Kang Sun, H. O. Park Jung and S. O. O. Kim Byung, J. Microbiol. Biotechnol., 15, 259 (2005).

    Google Scholar 

  3. M. O. Cho, Z. Li, H.-E. Shim, I.-S. Cho, M. Nurunnabi, H. Park, K. Y. Lee, S.-H. Moon, K.-S. Kim, S.-W. Kang and K. M. Huh, NPG Asia Mater., 8, e309 (2016).

    Article  CAS  Google Scholar 

  4. S. H. Moon, S. W. Kang, S. J. Park, D. Bae, S. J. Kim, H. A. Lee, K. S. Kim, K. S. Hong, J. S. Kim, J. T. Do, K. H. Byun and H. M. Chung, Biomaterials, 34, 4013 (2013).

    Article  CAS  Google Scholar 

  5. W. Kim, Y. Gwon, S. Park, H. Kim and J. Kim, Bioact Mater, 19, 50 (2022).

    Article  CAS  Google Scholar 

  6. D. E. Kim, Y. B. Lee, H. E. Shim, J. J. Song, J. S. Han, K. S. Moon, K. M. Huh and S. W. Kang, ACS Omega, 7, 18471 (2022).

    Article  CAS  Google Scholar 

  7. A. Wang, L. A. Madden and V. N. Paunov, J. Mater. Chem. B, 8, 10487 (2020).

    Article  CAS  Google Scholar 

  8. J. Meneghel, P. Kilbride and G. J. Morris, Front Med (Lausanne), 7, 592242 (2020).

    Article  Google Scholar 

  9. Y. Park, K. M. Huh and S. W. Kang, Int. J. Mol. Sci., 22, 2491 (2021).

    Article  CAS  Google Scholar 

  10. H. Dong, X. Li, K. Chen, N. Li and H. Kagami, Tissue Eng. Part C Methods, 27, 253 (2021).

    Article  CAS  Google Scholar 

  11. K. Arai, D. Murata, S. Takao, A. R. Verissiomo and K. Nakayama, PLoS One, 15, e0230428 (2020).

    Article  CAS  Google Scholar 

  12. C. J. Hunt, Transfusion Med. Hemother., 46, 134 (2019).

    Article  Google Scholar 

  13. T. Chang and G. Zhao, Adv. Sci., 8, 2002425 (2021).

    Article  CAS  Google Scholar 

  14. Y. Liu, K. M. Shah and J. Luo, Front. Bioeng. Biotechnol., 9, 770655 (2021).

    Article  Google Scholar 

  15. Z. Lv, J. Li, X. Xu, Q. Jiang and D. Shi, Ann. Joint, 5, 33 (2020).

    Article  Google Scholar 

  16. J. I. Lee, M. Sato, H. W. Kim and J. Mochida, Eur. Cell Mater, 22, 275 (2011).

    Article  CAS  Google Scholar 

  17. G. Schulze-Tanzil, Ann. Anat, 191, 325 (2009).

    Article  CAS  Google Scholar 

  18. J. H. Jeon, B. G. Yun, M. J. Lim, S. J. Kim, M. H. Lim, J. Y. Lim, S. H. Park and S. W. Kim, Tissue Eng. Regen Med., 17, 81 (2020).

    Article  CAS  Google Scholar 

  19. S. W. Kang S. P. Yoo and B. S. Kim, Biomed Mater. Eng., 17, 269 (2007).

    CAS  Google Scholar 

  20. J. Y. Yhee, Y. J. Kim, J. H. Ryu, H. Y. Yoon, H. Chang, J. H. Park, H. Lee, H. S. Jang, U. Jeong, K. Kim and S. W. Kang, Macromol. Biosci., 15, 1224 (2015).

    Article  CAS  Google Scholar 

  21. T. Takahashi, T. Ogasawara, Y. Asawa, Y. Mori, E. Uchinuma, T. Takato and K. Hoshi, Tissue Eng., 13, 1583 (2007).

    Article  CAS  Google Scholar 

  22. R. Edmondson, J. J. Broglie, A. F. Adcock and L. Yang, Assay Drug Dev. Technol., 12, 207 (2014).

    Article  CAS  Google Scholar 

  23. Z. Lin, C. Willers, J. Xu and M.H. Zheng, Tissue Eng., 12, 1971 (2006).

    Article  CAS  Google Scholar 

  24. T. H. Jang, S. C. Park, J. H. Yang, J. Y. Kim, J. H. Seok, U. S. Park, C. W. Choi, S. R. Lee and J. Han, Integr. Med. Res., 6, 12 (2017).

    Article  Google Scholar 

  25. B. Pinto, A. C. Henriques, P. M. A. Silva and H. Bousbaa, Pharmaceutics, 12, 1186 (2020).

    Article  CAS  Google Scholar 

  26. P. S. Thakuri, M. Gupta, M. Plaster and H. Tavana, Assay Drug Dev. Technol., 17, 140 (2019).

    Article  CAS  Google Scholar 

  27. N.-E. Ryu, S.-H. Lee and H. Park, Cells, 8, 1620 (2019).

    Article  CAS  Google Scholar 

  28. N. H. Lee, O. Bayaraa, Z. Zechu and H. S. Kim, BMB Rep., 54, 356 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program (NRF-2020R1A2C2100794 and NRF-2022R1A2C1010161) of the National Research Foundation funded by the Korean government and by the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (KFRM 22A0105L1-11). This research was supported by the Korea Institute of Toxicology, Republic of Korea (1711159823).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun-Woong Kang or Kang Moo Huh.

Additional information

Author Contributions

T.T.T and S.W.K, conceived and planned the experiments. T.T.T and K.H.P contributed to sample preparation. T.T.T carried out the experiments, process the experiment data, draft the manuscript and designed the figure. T.T.T, S.H.E, K.H.P and Y.B.L were involved in analyzing data. J.J.S contributed to the histological evaluation. T.T.T and K.H.P performed the measurement, Y.B.L wrote the manuscript with input from all authors. S.W.K and K.M.H supervised the project.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, T.T., Lee, Y.B., Park, K.H. et al. Cryopreservable three-dimensional spheroid culture for ready-to-use systems. Korean J. Chem. Eng. 40, 390–397 (2023). https://doi.org/10.1007/s11814-022-1279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1279-9

Keywords

Navigation