Skip to main content
Log in

Numerical analysis of the coupling between heat transfer and pyrolysis in heat-not-burn tobacco using computational fluid dynamics

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work developed a computational fluid dynamics (CFD) model to analyze and optimize the design of a heat-not-burn tobacco (HnB) device, which is an electrically heated tobacco product. The associated mathematical models were derived to express the fluid flow and pyrolysis of tobacco porous media, which is assumed to follow Darcy’ law. In addition, an apparent kinetic model was implemented as a submodel to represent tobacco pyrolysis reactions. Simulation results of the CFD model were compared with experimental data for validation. The results elucidate the interplay between the heat transfer inside the tobacco substrate and the pyrolysis reactions. Case studies were conducted to reveal that the chemical components generated in the HnB are strongly affected by the temperature distribution inside, which can be controlled by the heater design and operation. This leads us to suggest a new design which has dual heat sources of a needle heater and a wall heater controlled at 468 K. The proposed design is shown to increase the nicotine generation rate by 4.6 times while generating less amounts of harmful and potentially harmful constituents (HPHCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Simonavicius, A. McNeill, L. Shahab and L. S. Brose, Tobacco Control, 28, 582 (2018).

    Article  PubMed  Google Scholar 

  2. M. Forster, C. Liu, M. G. Duke, K. G. McAdam and C. J. Proctor, C. J., Chem. Cent. J., 9, 1 (2015).

    Article  CAS  Google Scholar 

  3. R. R. Baker, Thermochim. Acta, 28, 45 (1979).

    Article  Google Scholar 

  4. R. R. Baker and L. J. Bishop, J. Anal. Appl. Pyrol., 71, 223 (2004).

    Article  CAS  Google Scholar 

  5. M. A. Wojtowicz, R. Bassilakis, W. W. Smith, Y. G. Chen and R. M. Carangelo, J. Anal. Appl. Pyrol., 66, 235 (2003).

    Article  CAS  Google Scholar 

  6. M. K. Akalin and S. Karagöz, BioRes., 6, 1520 (2011).

    Google Scholar 

  7. A. Gómez-Siurana, A. Marcilla, M. Beltrán, D. Berenguer, I. Martínez-Castellanos, L. Catalá and S. Menargues, Thermochim. Acta, 587, 24 (2014).

    Article  Google Scholar 

  8. F. Barontini, A. Tugnoli, V. Cozzani, J. Tetteh, M. Jarriault and I. Zinovik, Ind. Eng. Chem. Res., 52, 14984 (2013).

    Article  CAS  Google Scholar 

  9. M. Muramatsu, Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 21, 286 (2005).

    Article  CAS  Google Scholar 

  10. S. Talih, Z. Balhas, R. Salman, R. El-Hage, N. Karaoghlanian, A. El-Hellani, M. Baassiri, E. Jaroudi, T. Eissenberg, N. Saliba and A. Shihadeh, Aerosol. Sci. Technol., 51, 1 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. S.-C. Yi, E.-S. Song and M. R. Hajaligol, J. Fire Sci., 19, 429 (2016).

    Article  Google Scholar 

  12. B. Eitzinger and S. Pirker, Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 21, 403 (2005).

    Article  Google Scholar 

  13. M. S. Saidi, M. R. Hajaligol and F. Rasouli, Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 21, 157 (2004).

    Article  Google Scholar 

  14. M. S. Saidi, M. R. Hajaligol and F. Rasouli, J. Anal. Appl. Pyrol., 72, 141 (2004).

    Article  CAS  Google Scholar 

  15. W. Jianhui, D. Wen, Z. Kejun, Z. Xiaobing, P. Bin and L. Huimin, Tobacco Sci. Technol., 48, 39 (2015).

    Google Scholar 

  16. Z. Jiang, X. Ding, T. Fang, H. Huang, W. Zhou and Q. Sun, J. Phys.: Conference Series, 1064, 012011 (2018).

    Google Scholar 

  17. M. Nordlund and A. K. Kuczaj, ECI Symposium Series (2016).

  18. W. M. Deen, Introduction to chemical engineering fluid mechanics, Cambridge University Press, Cambridge (2016).

    Book  Google Scholar 

  19. ANSYS, Fluent udf manual 18.0, ANSYS, Inc. (2017).

  20. ANSYS, Fluent users guide 18.0, ANSYS, Inc. (2017).

  21. R. Goel, Z. T. Bitzer, S. M. Reilly, J. Foulds, J. Muscat, R. J. Elias and J. P. Richie, Chem. Res. Toxicol., 31, 325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. B. G. Im, S. W. Kim, J. H. Kang and Y. J. Yang, J. Korean Acad Fam. Med., 22, 674 (2001).

    Google Scholar 

Download references

Acknowledgement

This research was supported by Korea Tomorrow & Global (KT&G) Corporation and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008475, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Choi, H., Jung, Y. et al. Numerical analysis of the coupling between heat transfer and pyrolysis in heat-not-burn tobacco using computational fluid dynamics. Korean J. Chem. Eng. 39, 2907–2915 (2022). https://doi.org/10.1007/s11814-022-1272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1272-3

Keywords

Navigation