Skip to main content
Log in

Cavitation cloud dynamic characteristics of dual-chamber self-excited oscillatory waterjet

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Aiming to enhance self-excited oscillating cavitation jet performance, the effect of the dual-chamber nozzle structure on the jet dynamical characteristics was designed and investigated. With high-speed camera technology, the cavitation phenomenon was investigated to analyze the area pattern and shedding period of the cavitation cloud under different nozzle structures. The results showed that the dual-chamber nozzle significantly improved the jet cavitation strength, and the cavitation cloud area increased by 76% and decreased the shedding period by 90% compared with the single-chamber nozzle. In the upstream chamber, the upper shrinkage ratio had a more drastic effect on the cavitation cloud area and shedding frequency than the lower shrinkage ratio with a more sensitive effect on the shedding frequency. In the downstream chamber, the outlet diameter ratio and chamber diameter were more sensitive to the regulation of cavitation cloud shedding frequency and area, respectively, with the optimal regulation at the outlet diameter ratio of 1 and chamber length of 6 mm. The chamber diameter modulated the cavitation cloud most drastically with a comprehensive performance optimum at 12 mm, which the area fluctuation reached 76.8%. The results provide a basis for further research and application of dual-chamber nozzles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Xu, J. Wang, W. Chen, B. Ji, H. Yan, Z. Zhang and X. Long, Ultrason. Sonochem., 83, 105924 (2022).

    Article  CAS  Google Scholar 

  2. C. Liu, R. R. Chen, C. Z. Han, X. Q. Pi, S. L. Chang, H. Jiang, X. P. Long and M. Q. Du, Plos One, 16 (2021).

  3. H. Soyama, J. Eng. Mater.-T Asme, 126, 123 (2004).

    Article  CAS  Google Scholar 

  4. Y. Hu, Y. Kang, X.-C. Wang, X.-H. Li, X.-P. Long, G.-Y. Zhai and M. Huang, Int. J. Precis. Eng. Man., 15, 1973 (2014).

    Article  Google Scholar 

  5. J. Zhu, X. Long, W. Wu and H. Yao, J. Mech. Sci. Technol., 22, 1926 (2008).

    Article  Google Scholar 

  6. H. Soyama, T. Kikuchi, M. Nishikawa and O. Takakuwa, Surf. Coat. Tech., 205, 3167 (2011).

    Article  CAS  Google Scholar 

  7. V. Johnson Jr., W. Lindenmuth, A. Conn and G. Frederick, Feasibility study of tuned-resonator, pulsating cavitating water jet for deep-hole drilling, Hydronautics Incorporated, United States (1981).

    Book  Google Scholar 

  8. V. Johnson, A. Conn, W. Lindenmuth, G. Chahine, G. Frederick, Proceedings Of The International Symposium On Jet Cutting Technology, Surrey, England, 16 (1982).

  9. A. Conn, 5th Int’l. Symp. On Jet Cutting Tech., 1 (1980).

  10. Z. L. Fang, Y. Kang, X. C. Wang, D. Li, Y. Hu, M. Huang and X. Y. Wang, IOP Conf. Ser. Earth Env. Sci., 22 (2014).

  11. D. Li, Y. Kang, X. Ding, X. Wang and Z. Fang, Stroj Vestn-J Mech E, 63, 92 (2017).

    Article  CAS  Google Scholar 

  12. H. Shi, Y. Kang, D. Li and Z. Fang, P I Mech Eng C-J Mec, 234, 4589 (2020).

    Article  Google Scholar 

  13. Z. Fang, Q. Wu, M. Zhang, H. Liu, P. Jiang and D. Li, Energies, 12 (2019).

  14. D. Li, Y. Kang, X. Ding, X. Wang and W. Liu, J. Mech. Sci. Technol., 31, 1203 (2017).

    Article  Google Scholar 

  15. W. Liu, Y. Kang, M. Zhang, X. Wang and D. Li, Int. J. Heat Fluid Fl., 68, 158 (2017).

    Article  Google Scholar 

  16. H. Soyama J. Fluid Eng.-T Asme, 127, 1095 (2005).

    Article  Google Scholar 

  17. M. Xu, M. Wu and J. Mi, Exp. Therm. Fluid Sci., 106, 226 (2019).

    Article  Google Scholar 

  18. L. M. Hlaváč, Proceedings of the 2007 American WJTA Conference and Expo, Houston, TX, USA, 19 (2007).

  19. X. Wang, Y. Li, Y. Hu, X. Ding, M. Xiang and D. Li, Energies, 13 (2020).

  20. E. Hutli, M. S. Nedeljkovic, A. Bonyar and D. Legrady, Exp. Therm. Fluid Sci., 80, 281 (2017).

    Article  CAS  Google Scholar 

  21. E. Hutli, M. Nedeljkovic and A. Bonyar, Int. J. Heat Mass Tran., 117, 873 (2018).

    Article  Google Scholar 

  22. H. Soyama, Wear, 297, 895 (2013).

    Article  CAS  Google Scholar 

  23. C. Peng, S. Tian and G. Li, Ocean Eng., 149, 1 (2018).

    Article  Google Scholar 

  24. K. Pianthong, S. Zakrzewski, M. Behnia and B. E. Milton, Exp. Therm. Fluid Sci., 27, 589 (2003).

    Article  CAS  Google Scholar 

  25. H. Soyama, Y. Yamauchi, Y. Adachi, K. Sato, T. Shindo and R. Oba, Jsme Int. J. B-Fluid T, 38, 245 (1995).

    Article  Google Scholar 

  26. K. R. Laberteaux, S. L. Ceccio, V. J. Mastrocola and J. L. Lowrance, Exp. Fluids, 24, 489 (1998).

    Article  Google Scholar 

  27. H. Liu, C. Kang, W. Zhang and T. Zhang, Exp. Therm. Fluid Sci., 88, 504 (2017).

    Article  CAS  Google Scholar 

  28. M. M. Wright, B. Epps, A. Dropkin and T. T. Truscott, Exp. Fluids, 54 (2013).

  29. Q. Wu, W. Wei, B. Deng, P. Jiang, D. Li, M. Zhang and Z. Fang, J. Mech. Sci. Technol., 33, 621 (2019).

    Article  Google Scholar 

  30. E. Hutli, M. Nedeljkovic and A. Bonyar, J. Braz. Soc. Mech. Sci., 41 (2019).

  31. E. Hutli, M. S. Nedeljkovic and S. Czifrus, Therm. Sci., 24, 407 (2020).

    Article  Google Scholar 

  32. E. A. F. Hutli and M. S. Nedeljkovic, J. Fluid Eng.-T Asme, 130 (2008).

  33. E. Hutli, P. B. Petrovic, M. Nedeljkovic and D. Legrady, Flow Turbul Combust (2021).

  34. E. Roohi, M.-R. Pendar and A. Rahimi, Appl. Math. Model, 40, 542 (2016).

    Article  Google Scholar 

  35. G. Y. Peng, C. X. Yang, Y. Oguma and S. Shimizui, J. Hydrodyn., 28, 986 (2016).

    Article  Google Scholar 

  36. M. Passandideh-Fard and E. Roohi, Int. J. Comput. Fluid D, 22, 97 (2008).

    Article  Google Scholar 

  37. M.-R. Pendar and E. Roohi, Ocean Eng., 112, 287 (2016).

    Article  Google Scholar 

  38. J. Li, R. Xu and L. Wang, J. Eng. Thermophys-Rus, 25, 241 (2004).

    Google Scholar 

  39. T. Kolsek, N. Jelic and J. Duhovnik, Appl. Math. Model, 31, 2355 (2007).

    Article  Google Scholar 

  40. E. Roohi, A. P. Zahiri and M. Passandideh-Fard, Appl. Math. Model, 37, 6469 (2013).

    Article  Google Scholar 

  41. M.-R. Pendar and E. Roohi, Int. J. Multiphas Flow, 98, 1 (2018).

    Article  CAS  Google Scholar 

  42. A. Movahedian, M. Pasandidehfard and E. Roohi, Ocean Eng., 192 (2019).

  43. M.-R. Pendar, E. Esmaeilifar and E. Roohi, Int. J. Multiphas Flow, 132 (2020).

  44. J. Sekyi-Ansah, Y. Wang, Z. Tan, J. Zhu and F. Li, Arab. J. Sci. Eng., 45, 4907 (2020).

    Article  CAS  Google Scholar 

  45. Q. Wen, H. D. Kim, Y. Z. Liu and K. C. Kim, Exp. Therm. Fluid Sci., 57, 396 (2014).

    Article  Google Scholar 

  46. B. Stutz and S. Legoupil, Exp. Fluids, 35, 130 (2003).

    Article  Google Scholar 

  47. A. Kolahan, E. Roohi and M.-R. Pendar, Ocean Eng., 182, 235 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52175245), the National Natural Science Foundation of China (No. 52174004), and the National Key Research and Development Program of China (No. 2018YFC0808401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kang.

Additional information

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Kang, Y., Shi, H. et al. Cavitation cloud dynamic characteristics of dual-chamber self-excited oscillatory waterjet. Korean J. Chem. Eng. 39, 3214–3226 (2022). https://doi.org/10.1007/s11814-022-1258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1258-1

Keywords

Navigation