Skip to main content
Log in

Sb-Fe bimetallic non-aqueous phase desulfurizer for efficient absorption of hydrogen sulfide: A combined experimental and DFT study

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A non-aqueous phase (Sb/Fe/NMP) desulfurization system for the removal of hydrogen sulfide from natural gas was constructed by introducing SbCl3 and FeCl3 in a specific ratio into N-methylpyrrolidone (NMP). The desulfurizing agent and its sulfur product were characterized, and the absorption pattern of H2S by the system was investigated by static desulfurization experiments. The results indicate that the desulfurizer’s sulfur capacity can reach 16 g/L at room temperature and pressure, and that adding the optimum amount of water and appropriate temperature increase can assist to increase desulfurization efficiency. The system maintained a sulfur capacity level of more than 90% of the initial sulfur capacity after five consecutive desulfurization-regeneration cycles. XRD and XPS spectrogram revealed that the regenerated solid product was high purity sulfur. Sb3+ is a key component to ensure the effective absorption of H2S. The presence of a moderate amount of Fe3+ can oxidize and absorb small amounts of H2S and promote the oxidative regeneration of the system. In addition, we combined the obtained experimental data with density flooding theory (DFT) theoretical calculations to show that the effective coordination of Sb(III) with HS in the NMP environment is the main reason for the effective absorption of H2S by the desulfurizer. NMP is not involved in the coordination absorption process of hydrogen sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chen and Q. Cui, Pet. Eng. Construction, 36, 1 (2010).

    Google Scholar 

  2. Y. Liu and Y. Wang, Energy Fuels, 33, 10812 (2019).

    Article  CAS  Google Scholar 

  3. D. Wu, J. Zhou, T. Yu, S. Wu and Y. Yang, Chin. J. Environ. Eng., 7, 3153 (2013).

    CAS  Google Scholar 

  4. Y. Zhao, J. Wang, Y. Liu, P. Zheng and B. Hu, Environ. Res., 200, 111423 (2021).

    Article  CAS  Google Scholar 

  5. X. Zeng, X. Xiao, J. Chen and H. Wang, Appl. Catal. B: Environ., 248, 573 (2019).

    Article  CAS  Google Scholar 

  6. F. Liu, J. Yu, A. B. Qazi, L. Zhang and X. K. Liu, Environ. Sci. Technol., 55, 1419 (2021).

    Article  CAS  Google Scholar 

  7. Z. Guo, T. Zhang, T. Liu, J. Du, B. Jia, S. Gao and Y. Jiang, Environ. Sci. Technol., 49, 5697 (2015).

    Article  CAS  Google Scholar 

  8. A. Patah, J. Bchle and G. Grampp, J. Electrochem. Soc., 166, H635 (2019).

    Article  CAS  Google Scholar 

  9. G. Hua, Q. Zhang, D. Mcmanus, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 9, 1147 (2006).

    Article  Google Scholar 

  10. J. H. Yang, Korean J. Chem. Eng., 38, 674 (2021).

    Article  CAS  Google Scholar 

  11. X. Li, J. Han, Y. Liu, Z. Dou and T. A. Zhang, Sep. Purif. Technol., 281, 119849 (2022).

    Article  CAS  Google Scholar 

  12. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 37, 785, (1988).

    Article  CAS  Google Scholar 

  13. A. D. Becke, Chem. Phys., 98, 5648 (1993).

    CAS  Google Scholar 

  14. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297 (2005).

    Article  CAS  Google Scholar 

  15. F. Weigend, Chem. Phys., 8, 1057 (2006).

    CAS  Google Scholar 

  16. M. J. Frisch, G. W. Trucks and H. B. Schlegel, Gaussian Rev. D.01, Gaussian, Inc., Wallingford CT (2013).

    Google Scholar 

  17. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 113, 6378 (2009).

    Article  CAS  Google Scholar 

  18. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 32, 1456 (2011).

    Article  CAS  Google Scholar 

  19. Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory Comput., 2, 364 (2006).

    Article  Google Scholar 

  20. A. D. Becke, J. Chem. Phys., 92, 5397 (1990).

    Article  CAS  Google Scholar 

  21. T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012).

    Article  Google Scholar 

  22. G. Audran, E. G. Bagryanskaya and S. Marque, Polymers, 12, 1481 (2020).

    Article  CAS  Google Scholar 

  23. F. T. Li, B. Wu and R. H. Liu, Chem. Eng. J., 274, 192 (2015).

    Article  CAS  Google Scholar 

  24. Y. J. Ou, X. M. Wang and C. L. Li, IOP Conference Series Earth and Environmental Science 2017, 100, 12036 (2015).

    Article  Google Scholar 

  25. G. Zhong, G. Mei and Y. Jia, Adv. Mater. Res., 549, 126 (2012).

    Article  CAS  Google Scholar 

  26. L. D. Cao, S. J. Zeng, X. P. Zhang and S. J. Zhang, J. Chem. Eng., 66, 1 (2015).

    Article  CAS  Google Scholar 

  27. D. X. Wang, J. J. Ru and H. M. Huang, Wet Metallurgy, 40, 4 (2021) (In Chinese).

    Google Scholar 

  28. X. Liu and R. Wang, Fuel Process. Technol., 160, 78 (2017).

    Article  CAS  Google Scholar 

  29. A. H. Jalili, M. Mehrabi and A. T. Zoghi, Fluid Phase Equilib., 453, 1 (2017).

    Article  CAS  Google Scholar 

  30. K. Ding, F. Zannat, C. J. Morris, W. W. Brennessel and P. L. Holland, J. Org. Chem., 694, 4204 (2009).

    Article  CAS  Google Scholar 

  31. D. Amoroso and S. Picozzi, Phys. Rev. B, 93(21), 214106 (2016).

    Article  Google Scholar 

  32. G. Q. Zhong, M. Gu and Y. Q. Jia, Adv. Mater. Res., 549, 126 (2012).

    Article  CAS  Google Scholar 

  33. H. Xu, D. Lee and J. He, Phys. Rev. B, 78, 174103 (2008).

    Article  Google Scholar 

  34. Z. Y. Yang, X. M. Liu and W. D. Yang, J. Anal. Testing, 3, 19 (1992). (In Chinese).

    Google Scholar 

  35. M. J. Han, J. Y. He, W. Sun, S. Li and H. Yu, Trans. Nonferrous Metals Soc. China, 1, 1 (2022).

    Google Scholar 

  36. R. Lo, D. Manna, M. Lamanec, M. Dračínský, P. Bouř, T. Wu, J. Kaleta and P. Hobza, Nat. Commun., 13, 1 (2022).

    Google Scholar 

  37. M. A. Hampton, C. Plackowski and A. V. Nguyen, Langmuir, 27, 4190 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was funded by China National Science and Technology Major Project (2016ZX05017) and Sinopec Group Corporation 2020 Science and Technology Project “Organic Sulfur Catalytic Hydrolysis Technology Improves Quality Research” (No. 120049-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Qiu.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qiu, K., Dong, Y. et al. Sb-Fe bimetallic non-aqueous phase desulfurizer for efficient absorption of hydrogen sulfide: A combined experimental and DFT study. Korean J. Chem. Eng. 39, 3305–3314 (2022). https://doi.org/10.1007/s11814-022-1253-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1253-6

Keywords

Navigation