Skip to main content
Log in

Ozonation of styrene in the flue gas from fiberglass reinforced plastics manufacturing facility: Laboratory and on-site studies

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Styrene is a typical volatile organic compound (VOC) emitted from various sources that is considered hazardous due to its toxicity and strong odor. Many technologies have been developed to control VOCs, including plasma, catalytic, and thermal oxidation. In this study, styrene, one of the typical VOCs, was decomposed by ozone (O3) in laboratory and on-site systems. In a laboratory reactor, the styrene conversion efficiency in the reaction was determined under different temperatures, inlet styrene concentrations, and [O3]/[styrene] mole ratios. The styrene conversion efficiency decreased as the reaction temperature increased and was higher at higher mole ratios. A complete conversion was obtained in the laboratory system at room temperature, and 58.3% styrene conversion efficiency was achieved in the on-site system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. da Costa Filho, G. V. Silva, R. A. R. Boaventura, M. M. Dias, J. C. B. Lopes and V. J. P. Vilar, Sci. Total Environ., 687, 1357 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. M. J. Kim, Y. K. Seo, J. H. Kim and S. O. Baek, Environ. Sci. Pollut. Res., 27, 28912 (2020).

    Article  CAS  Google Scholar 

  3. L. Al-Awadi, M. Al-Rashidi, B. Pereira, A. Pillai and A. Khan, Int. J. Environ. Sci. Technol., 16, 2643 (2019).

    Article  CAS  Google Scholar 

  4. V. T. Nguyen, D. B. Nguyen, I. Heo and Y. S. Mok, Plasma Chem. Plasma Process., 40, 1207 (2020).

    Article  CAS  Google Scholar 

  5. H. J. Shin, J. C. Kim, S. J. Lee and Y. P. Kim, Environ. Sci. Pollut. Res., 20, 1468 (2013).

    Article  CAS  Google Scholar 

  6. Y. Ke, R. Liu, X. Chen, Y. Feng, P. Gao, H. Huang, L. Fan and D. Ye, J. Environ. Sci. (China), 104, 296 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Y. K. Park, W. G. Shim, S. C. Jung, H. Y. Jung and S. C. Kim, Korean J. Chem. Eng., 39(1), 161 (2022).

    Article  CAS  Google Scholar 

  8. C. A. Santos, N. H. Phuong, M. J. Park, S. B. Kim and Y. M. Jo, Korean J. Chem. Eng., 37(1), 120 (2020).

    Article  CAS  Google Scholar 

  9. K. H. P. Reddy, B. S. Kim, S. S. Lam, S. C. Jung, J. H. Song and Y. K. Park, Environ. Res., 195, 110876 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. H. W. Ryu, M. Y. Song, J. S. Park, J. M. Kim, S. C. Jung, J. H. Song, B. J. Kim and Y. K. Park, Environ. Res., 172, 649 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. S. Ryu, J. Lee, H. P. Reddy Kannapu, S. H. Jang, Y. Kim, H. Jang, J. M. Ha, S. C. Jung and Y. K. Park, Environ. Res., 191, 110149 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. J. Kim, E. E. Kwon, J. E. Lee, S. H. Jang, J. K. Jeon, J. H. Song and Y. K. Park, J. Hazard. Mater., 403, 123934 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. J. Kim, J. E. Lee, H. W. Lee, J. K. Jeon, J. H. Song, S. C. Jung, Y. F. Tsang and Y. K. Park, J. Hazard. Mater., 397, 122577 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Q. Ma, X. Lin, C. Yang, B. Long, Y. Gai and W. Zhang, R. Soc. Open Sci., 5, 172171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. K. Na, C. Song and D. R. Cocker, Atmos. Environ., 40, 1889 (2006).

    Article  CAS  Google Scholar 

  16. Y. S. Son, Y. S. Son, J. H. Park, P. Kim and J. C. Kim, Radiat. Phys. Chem., 81, 686 (2012).

    Article  CAS  Google Scholar 

  17. K. Kočí, M. Reli, I. Troppová, T. Prostějovský and R. Žebrák, Clean — Soil, Air, Water, 47(8), 1900126 (2019).

    Article  Google Scholar 

  18. Y. Díaz-de-Mera, A. Aranda, E. Martínez, A. A. Rodríguez, D. Rodríguez and A. Rodríguez, Atmos. Environ., 171, 25 (2017).

    Article  Google Scholar 

  19. H. Zhang, K. Li, T. Sun, J. Jia, X. Yang, Y. Shen, J. Wang and Z. Lou, Res. Chem. Intermed., 39, 1021 (2013).

    Article  CAS  Google Scholar 

  20. C. Schäfer, C. J. Ellstrom and B. Török, Top. Catal., 61, 643 (2018).

    Article  Google Scholar 

  21. H. C. S. Cho, J. R. Byung and G. Kim, J. Korean Soc. Occup. Env. Hyg., 18(4), 310 (2008).

    Google Scholar 

  22. T. Banu, K. Sen and A. K. Das, J. Phys. Chem. A, 122, 8377 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. A. Shojaei, H. Ghafourian, L. Yadegarian, K. Lari and M. T. Sadatipour, J. Environ. Heal. Sci. Eng., 19, 771 (2021).

    Article  CAS  Google Scholar 

  24. A. Ikhlaq, S. Waheed, K. S. Joya and M. Kazmi, Catal. Commun., 112, 15 (2018).

    Article  CAS  Google Scholar 

  25. R. Rashidi, G. Moussavi, A. Khavanin and A. Ghaderpoori, Int. J. Environ. Sci. Technol., 16, 8023 (2019).

    Article  CAS  Google Scholar 

  26. B. E. Coleman and B. S. Ault, J. Mol. Struct., 1023, 81 (2012).

    Article  CAS  Google Scholar 

  27. R. Criegee, Angew. Chemie Int. Ed. English, 14(11), 745 (1975).

    Article  Google Scholar 

  28. X. Zhang, F. Feng, S. Li, X. Tang, Y. Huang, Z. Liu and K. Yan, Chem. Eng. J., 232, 527 (2013).

    Article  CAS  Google Scholar 

  29. M. Ghavami, M. Aghbolaghy, J. Soltan and N. Chen, Front. Chem. Sci. Eng., 14(6), 937 (2020).

    Article  CAS  Google Scholar 

  30. V. Senatore, T. Zarra, G. Oliva, V. Belgiorno and V. Naddeo, Glob. Nest J., 22(2), 143 (2020).

    CAS  Google Scholar 

  31. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S. C. Jung and Y. K. Park, Sci. Total Environ., 719, 137405 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. E. C. Tuazon, J. Arey, R. Atkinson and S. M. Aschmann, Environ. Sci. Technol., 27, 1832 (1993).

    Article  CAS  Google Scholar 

  33. M. Alibolandi, J. T. Darian, M. Ghaedian, S. J. Royaee and A. Shafeghat, Korean J. Chem. Eng., 37(11), 1867 (2020).

    Article  CAS  Google Scholar 

  34. T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky and G. E. Zaikov, Interdiscip. Toxicol., 7(2), 47 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Y. Zhang and K. R. Pagilla, Ozone Sci. Eng., 35, 390 (2013).

    Article  CAS  Google Scholar 

  36. W. Gao, L. Du, P. Li, W. Jiao and Y. Liu, Chem. Eng. Process. — Process Intensif., 158, 108166 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Research Council of Science & Technology (NST) grant of the Korea Government (MSIP) (No. CAP-18-08-KIMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Ah Roh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, S.A., Han, S.Y., Lee, D.H. et al. Ozonation of styrene in the flue gas from fiberglass reinforced plastics manufacturing facility: Laboratory and on-site studies. Korean J. Chem. Eng. 40, 1116–1121 (2023). https://doi.org/10.1007/s11814-022-1240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1240-y

Keywords

Navigation