Skip to main content

Advertisement

Log in

Numerical investigation of factors affecting carbon deposition and interaction on SOFC performance over time

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

One of the weaknesses of the fuel cell is the phenomenon of carbon deposition when using hydrocarbon fuel. Investigating the factors affecting the amount of carbon deposition can improve the performance of the fuel cell, efficiency and life time. A time-dependent two-dimensional numerical model based on the finite element method that considers the carbon deposition has been developed to evaluate the effect of velocity, temperature and hydrogen mole fraction as fuel constituent on the carbon deposition rate and porosity variations. The results were found in good agreement with the available published experimental and numerical data in terms of cell operating voltage, power density and carbon deposition rate. The carbon deposition rate accelerates with increasing operating temperature, inlet molar fraction of hydrogen, and decreasing the inlet velocity. Carbon deposition reduces porosity and catalyst activity. Due to the above mentioned variations, the electric power generated by the fuel cell is drastically reduced, leading to reduced electric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Andersson, J. Yuan and B. Sundén, Line approach and simulation for anode-supported SOFC, ASME seventh international fuel cell science, Engineering and Technology Conference, June 8-10, Newport Beach, California, USA (2009).

    Google Scholar 

  2. M. Ni, Int. J. Hydrogen Energy, 37(2), 1731 (2012).

    Article  CAS  Google Scholar 

  3. P. W. Li, S. P. Chen and M. K. Chyu, J. Fuel Cell Sci. Technol., 32), 188 (2006).

    Article  CAS  Google Scholar 

  4. Y. Patcharavorachot, A. Arpornwich-anop and A. Chuachuebsuk, J. Power Sources, 1772), 254 (2008).

    Article  CAS  Google Scholar 

  5. I. Khazaee and A. Rava, Energy, 119, 235 (2017).

    Article  CAS  Google Scholar 

  6. Z. Xu, X. Zhang, G. Li, G. Xiao and J. Q. Wang, Int. J. Hydrogen Energy, 4216), 10785 (2017).

    Article  CAS  Google Scholar 

  7. H. Xu and Z. Dang, Int. J. Heat Mass Transfer, 109, 1252 (2017).

    Article  CAS  Google Scholar 

  8. M. Borji, K. Atashkari, S. Ghorbani and N. Nariman-Zadeh, J. Mech. Eng. Sci., 2314), 672 (2015).

    Article  Google Scholar 

  9. M. C. Williams, J. P. Strakey, W. A. Surdoval and L. C. Wilson, Solid State Ionics, 17719), 2039 (2006).

    Article  CAS  Google Scholar 

  10. S. McIntosh and R. J. Gorte, Chem. Rev., 10410), 4845 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. T. Ma, M. Yan, M. Zeng, J. L. Yuan, Q. Chen, B. Sundén and Q. W. Wang, Appl. Energy, 152, 217 (2015).

    Article  CAS  Google Scholar 

  12. S. Assabumrungrata, N. Laosiripojanab, V. Pavarajarna, W. Sangtongkitcharoen, A. Tangjitmateea and P. Praserthdama, J. Power Sources, 1391-2), 55 (2005).

    Article  Google Scholar 

  13. T. Kim, G. Liu, M. Boaro, S. I. Lee, J. M. Vohs, R. J. Gorte, O.H. Al. Madhib and B. O. Dabbousi, J. Power Sources, 1552), 231 (2006).

    Article  CAS  Google Scholar 

  14. C. Schluckner, V. Subotic, V. Lawlor and C. Hochenauer, J. Fuel Cell Sci. Technol., 125), 1053 (2015).

    Article  Google Scholar 

  15. V. Subotic, C. Schluckner and C. Hochenauer, J. Energy Inst., 891), 121 (2016).

    Article  CAS  Google Scholar 

  16. T. Kim, G. Liu, M. Boaro, S. I. Lee, J. M. Vohs, R. J. Gorte, O. H. Al. Madhib and B. O. Dabbousi, J. Power Sources, 1552), 231 (2006).

    Article  CAS  Google Scholar 

  17. Y. Yang, X. Du, L. Yang, Y. Huang and H. Xian, Appl. Therm. Eng., 295-6), 1106 (2009).

    Article  CAS  Google Scholar 

  18. H. Xu and Z. Dang, J. Appl. Energy, 178, 294 (2016).

    Article  CAS  Google Scholar 

  19. H. P. He and J. M. Hill, Appl. Catal. A, 3172), 284 (2007).

    Article  CAS  Google Scholar 

  20. T. Chen, W. G. Wang, H. Miao, T. Li and C. Xu, J. Power Sources, 1965), 2461 (2011).

    Article  CAS  Google Scholar 

  21. V. Alzate-Restrepo and J. M. Hill, Appl. Catal. A, 3421-2), 49 (2008).

    Article  CAS  Google Scholar 

  22. J. H. Koh, Y. S. Yoo, J. W. Park and H. C. Lim, Solid State Ionics, 1493-4), 157 (2002).

    Article  CAS  Google Scholar 

  23. C. Schluckner, V. Subotic, V. Lawlor and C. Hochenauer, J. Fuel Cell Sci. Technol., 125), 1053 (2015).

    Article  Google Scholar 

  24. M. Andersson, J. Yuan and B. Sundén, Appl. Energy, 875), 1461 (2010).

    Article  CAS  Google Scholar 

  25. M. Borji, K. Atashkari, N. Nariman-zadeh and M. Masoumpour, J. Mech. Eng. Sci., 22917), 3125 (2015).

    Article  CAS  Google Scholar 

  26. V. M. Janardhanan and O. Deutschmann, J. Power Sources, 1622), 1192 (2006).

    Article  CAS  Google Scholar 

  27. M. Yan, M. Zeng, Q. Chen and Q. Wang, Appl. Energy, 97, 754 (2012).

    Article  CAS  Google Scholar 

  28. Z. Jaworski and P. Pianko-Oprych, Int. J. Hydrogen Energy, 4227), 16920 (2017).

    Article  CAS  Google Scholar 

  29. M. M. Hussain, X. Li and I. Dincer, J. Power Sources, 1892), 916 (2009).

    Article  CAS  Google Scholar 

  30. P. Costamagna and K. Honegger, J. Electrochem. Soc., 14511), 3995 (1998).

    Article  CAS  Google Scholar 

  31. O. Razbani, M. Assadi and M. Andersson, Int. J. Hydrogen Energy, 3824), 10068 (2013).

    Article  CAS  Google Scholar 

  32. P. Sarmah, T. K. Gogoi and R. Das, Appl. Therm. Eng., 119, 98 (2017).

    Article  Google Scholar 

  33. P. Dokmaingam, J. T. S. Irvine, S. Assabumrungrat, S. Charojrochkul and N. Laosiripojana, Int. J. Hydrogen Energy, 3524), 13271 (2010).

    Article  CAS  Google Scholar 

  34. H. Iwai, Y. Yamamoto, M. Saito and H. Yoshida, J. Energy, 364), 2225 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Atashkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshkam, H., Atashkari, K. & Borji, M. Numerical investigation of factors affecting carbon deposition and interaction on SOFC performance over time. Korean J. Chem. Eng. 39, 3012–3020 (2022). https://doi.org/10.1007/s11814-022-1238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1238-5

Keywords

Navigation