Skip to main content
Log in

Experimental and numerical simulation study on the hydrodynamic characteristics of spherical and irregular-shaped particles in a 3D liquid-fluidized bed

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Recently, the fluidized bed has been shown to assist in improving the recovery of coarse minerals during flotation. In this study, the fluidization characteristics of spherical and irregular particles in a three-dimensional liquid-solid fluidized bed were studied by combining experimental and computational fluid dynamics (CFD) methods. Fluidization experiments were performed to investigate the effect of superficial velocity, particle shape, and particle size on solid holdup and bed expansion height. CFD model coupled different drag models for spherical and irregular particles were developed and validated by the experimental data of bed expansion ratio and pressure drop. Based on 3D CFD simulations, the axial and radial direction distributions of solid holdup, axial velocity, as well as granular temperature were obtained. Their distribution characteristics were analyzed and discussed in detail. The reported experimental data and simulation results can improve the understanding of irregular granular liquid-solid fluidized bed and provide a basis for further research on fluidized bed flotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Epstein, Int. J. Chem. React. Eng., 1 (2002).

  2. G. J. Jameson, L. Cooper, K. K. Tang and C. Emer, Miner. Eng., 146 (2020).

  3. B. Liu, X. Li, Z. Li, H. Sui and H. Li, Chem. Eng. Res. Des., 94, 501 (2015).

    Article  CAS  Google Scholar 

  4. D. Shun, J.-S. Shin, D.-H. Bae, H.-J. Ryu and J. Park, Korean J. Chem. Eng., 34, 3125 (2017).

    Article  CAS  Google Scholar 

  5. H. W. Lee, H. Jeong, Y.-M. Ju and S. M. Lee, Korean J. Chem. Eng., 37, 1174 (2020).

    Article  CAS  Google Scholar 

  6. L. Q. Lu, K. Yoo and S. Benyahia, Ind. Eng. Chem. Res., 55, 10477 (2016).

    Article  CAS  Google Scholar 

  7. R. Sowmeyan and G. Swaminathan, Bioresour. Technol., 99, 6280 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. K. M. Qureshi, A. N. K. Lup, S. Khan, F. Abnisa and W. M. A. W. Daud, Korean J. Chem. Eng., 38, 1797 (2021).

    Article  CAS  Google Scholar 

  9. D. Georges-Filteau, J. Bouchard and A. Desbiens, IFAC-PapersOnLine, 52, 66 (2019).

    Article  Google Scholar 

  10. S. Fosu, B. Awatey, W. Skinner and M. Zanin, Miner. Eng., 77, 137 (2015).

    Article  CAS  Google Scholar 

  11. J. N. Kohmuench, M. J. Mankosa, H. Thanasekaran and A. Hobert, Miner. Eng., 121, 137 (2018).

    Article  CAS  Google Scholar 

  12. J. N. Kohmuench, M. J. Mankosa, E. S. Yan, H. Wyslouzil and L. Christodoulou, 2065 (2010).

  13. B. Awatey, H. Thanasekaran, J. N. Kohmuench, W. Skinner and M. Zanin, Miner. Eng., 50, 99 (2013).

    Article  Google Scholar 

  14. T.-W. Cheng and P. N. Holtham, Miner. Eng., 8, 883 (1995).

    Article  CAS  Google Scholar 

  15. H. Soto and G. Barbery, Mining Metall. Explor., 8, 16 (1991).

    CAS  Google Scholar 

  16. S.V. Ghatage, Z. Peng, M. J. Sathe, E. Doroodchi, N. Padhiyar, B. Moghtaderi, J. B. Joshi and G. M. Evans, Chem. Eng. J., 256, 169 (2014).

    Article  CAS  Google Scholar 

  17. A. Tripathy, S. Bagchi, S. K. Biswal and B. C. Meikap, Chem. Eng. Res. Des., 117, 520 (2017).

    Article  CAS  Google Scholar 

  18. A. Tripathy, A. K. Sahu, S. K. Biswal and B. K. Mishra, Particuology, 11, 789 (2013).

    Article  CAS  Google Scholar 

  19. O. J. I. Kramer, P. J. de Moel, J. T. Padding, E. T. Baars, Y. M. F. E. Hasadi, E. S. Boek and J. P. van der Hoek, J. Water Process Eng., 37, 101481 (2020).

    Article  Google Scholar 

  20. O. J. I. Kramer, J. T. Padding, W. H. van Vugt, P. J. de Moel, E. T. Baars, E. S. Boek and J. P. van der Hoek, Int. J. Multiphase Flow, 127 (2020).

  21. J. Peng, W. Sun, H. Han and L. Xie, Minerals, 11, 569 (2021).

    Article  CAS  Google Scholar 

  22. J. T. Cornelissen, F. Taghipour, R. Escudie, N. Ellis and J. R. Grace, Chem. Eng. Sci., 62, 6334 (2007).

    Article  CAS  Google Scholar 

  23. G. Liu, P. Wang, H. Lu, F. Yu, Y. Zhang, S. Wang and L. Sun, Particuology, 25, 42 (2016).

    Article  CAS  Google Scholar 

  24. H. Luo, C. Zhang and J. Zhu, Powder Technol., 348, 93 (2019).

    Article  CAS  Google Scholar 

  25. B. Pang, S. Wang, W. Chen, M. Hassan and H. Lu, Powder Technol., 366, 249 (2020).

    Article  CAS  Google Scholar 

  26. P. W. Lau, R. Utikar, V. Pareek, S. Johnson, S. Kale and A. Lali, Chem. Eng. Res. Des., 91, 1660 (2013).

    Article  CAS  Google Scholar 

  27. Y. He, S. Yan, T. Wang, B. Jiang and Y. Huang, Powder Technol., 287, 264 (2016).

    Article  CAS  Google Scholar 

  28. H. P. Zhu, Z. Y. Zhou, R. Y. Yang and A. B. Yu, Chem. Eng. Sci., 63, 5728 (2008).

    Article  CAS  Google Scholar 

  29. L. M. Armstrong, S. Gu and K. H. Luo, Int. J. Heat Mass Tran., 53, 4949 (2010).

    Article  CAS  Google Scholar 

  30. C. Loha, H. Chattopadhyay and P. K. Chatterjee, Chem. Eng. Sci., 75, 400 (2012).

    Article  CAS  Google Scholar 

  31. H. Lu, H. Yurong and D. Gidaspow, Chem. Eng. Sci., 58, 1197 (2003).

    Article  CAS  Google Scholar 

  32. A. Neri and D. Gidaspow, AIChE J., 46, 52 (2000).

    Article  CAS  Google Scholar 

  33. J. Wang, W. Ge and J. Li, Chem. Eng. Sci., 63, 1553 (2008).

    Article  CAS  Google Scholar 

  34. F. Dioguardi, P. Dellino and D. Mele, Powder Technol., 260, 68 (2014).

    Article  CAS  Google Scholar 

  35. L. Hua, H. Zhao, J. Li, J. Wang and Q. Zhu, Powder Technol., 284, 299 (2015).

    Article  CAS  Google Scholar 

  36. C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).

    Article  Google Scholar 

  37. F. R. Menter, Aiaa J., 32, 1598 (1994).

    Article  Google Scholar 

  38. D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, New York (1994).

    Google Scholar 

  39. C. Y. Wen, Chem. Eng. Prog. Symp. Ser., 62, 100 (1962).

    Google Scholar 

  40. S. Ergun, Chem. Eng. Prog., 48, 89 (1952).

    CAS  Google Scholar 

  41. A. Haider and O. Levenspiel, Powder Technol., 58, 63 (1989).

    Article  CAS  Google Scholar 

  42. F. J. Moraga, F. J. Bonetto and R. T. Lahey, Int. J. Multiphase Flow, 25, 1321 (1999).

    Article  CAS  Google Scholar 

  43. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  44. A. A. Avidan and J. Yerushalmi, Powder Technol., 32, 223 (1982).

    Article  CAS  Google Scholar 

  45. A. Singh, R. Verma, K. Kishore and N. Verma, Chem. Eng. Process, 47, 957 (2008).

    Article  CAS  Google Scholar 

  46. L. M. Romeo, L. I. Díez, I. Guedea, I. Bolea, C. Lupiáñez, A. González, J. Pallarés and E. Teruel, Exp. Therm. Fluid Sci., 35, 477 (2011).

    Article  CAS  Google Scholar 

  47. M. S. Rahaman, D. S. Mavinic and N. Ellis, J. Environ. Eng. Sci., 9, 137 (2014).

    Article  Google Scholar 

  48. Z. Ye, Y. Shen, X. Ye, Z. Zhang, S. Chen and J. Shi, J. Environ. Sci., 26, 991 (2014).

    Article  CAS  Google Scholar 

  49. J. Peng, W. Sun, L. Xie, H. Han and Y. Xiao, Minerals, 12 (2022).

  50. M. T. Islam and A. V. Nguyen, Miner. Eng., 134, 176 (2019).

    Article  CAS  Google Scholar 

  51. M. T. IslamIslam and A. V. Nguyen, Chem. Eng. Res. Des., 159, 13 (2020).

    Article  Google Scholar 

  52. G. Liu, P. Wang, S. Wang, L. Sun, Y. Yang and P. Xu, Adv. Powder Technol., 24, 537 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC) (No. 52122406) and Hunan High-tech Industry Technology Innovation Leading plan (No. 2022GK4056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haisheng Han or Le Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Sun, W., Han, H. et al. Experimental and numerical simulation study on the hydrodynamic characteristics of spherical and irregular-shaped particles in a 3D liquid-fluidized bed. Korean J. Chem. Eng. 39, 3165–3176 (2022). https://doi.org/10.1007/s11814-022-1234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1234-9

Keywords

Navigation