Skip to main content
Log in

Adsorption properties of β-carotene on mesoporous carbon-coated honeycomb monolith: Kinetics, thermodynamics, and regeneration studies

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A facile synthesis procedure of mesoporous carbons coated monolith (MCCM) adsorbent was accomplished using furfuryl alcohol as carbon precursor, triblock copolymer Pluronic F-127 as the structure-directing agent, pyrrole as the binder for polymerization with nitric acid as catalyst and inorganic cordierite as substrate through dip-coating method. Surface chemistry revealed the dominance of acidic sites over adsorbents surface with the majority of active sites occupied by the phenolic and carboxylic groups. The MCCM adsorbent exhibited representative Type IV isotherm with a uniform-distributed PSD plot centered at 6.18 nm. A thermodynamics study involving Langmuir and Freundlich models was applied to establish the adsorption equilibrium data at temperatures of 30 to 50 °C. The Freundlich model best described the experiment data with maximum adsorption capacity of β-carotene onto MCCM was 192.64 mg/g. Three kinetic models, Lagergren first-order, pseudo-second-order and intra-particle diffusion models, were employed to investigate the adsorption mechanism of β-carotene molecules onto active surface sites of MCCM adsorbent. Both the Lagergren first-order and pseudo-second-order kinetic models fitted with experimental data with the latter described perfectly with higher regression coefficient value (R2>0.99). Intra-particle diffusion featured the involvement in β-carotene adsorption mechanism, but it was not the sole rate-limiting step. The negative value of Gibbs free energy change (ΔGo) suggested the spontaneity of β-carotene adsorption process. In contrast, the positive values of enthalpy change (ΔHo) and entropy change (ΔSo) demonstrated the endothermic nature and entropy-driven of the adsorption process, respectively. The increased ΔGo with T indicated an increased degree of spontaneity at high temperatures. Regeneration studies of MCCM adsorbent exemplified a slight decrease in adsorption capacities after three consecutive regeneration cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sundram, R. Sambanthamurthi and Y. A. Tan, Asia Pac. J. Clin. Nutr., 12, 355 (2003).

    CAS  PubMed  Google Scholar 

  2. O. M. Lai, E. T. Phuah, Y. Y. Lee and Y. Basiron, Palm Oil. Bailey’s industrial oil and fat products, John Wiley & Sons, New Jersey (2020).

    Google Scholar 

  3. K. Y. Liew, A. H. Yee and M. R. Nordin, J. Am. Oil Chem. Soc., 70, 539 (1993).

    Article  CAS  Google Scholar 

  4. C. K. Ooi, Y. M. Choo, S. C. Yap, Y. Basiron and A. S. H. Ong, J. Am. Oil Chem. Soc., 71, 423 (1994).

    Article  CAS  Google Scholar 

  5. B. S. Baharin, K. Abdul Rahman, M. I. Abdul Karim, T. Oyaizu, K. Tanaka, Y. Tanaka and S. Takagi, J. Am. Oil Chem. Soc., 75, 399 (1998).

    Article  CAS  Google Scholar 

  6. R. A. Latip, B. S. Baharin, Y. B. Che Man and R. A. Rahman, J. Am. Oil Chem. Soc., 78, 83 (2001).

    Article  CAS  Google Scholar 

  7. J. Tong, Z. Wu, X. Sun, X. Xu and C. Li, Chin. J. Chem. Eng., 16, 270 (2008).

    Article  CAS  Google Scholar 

  8. A. L. Ahmad, C. Y. Chan, S. R. Abd Shukor and M. D. Mashitah, Chem. Eng. J., 148, 378 (2009).

    Article  CAS  Google Scholar 

  9. Z. Wu and C. Li, J. Hazard. Mater., 171, 582 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. M. Muhammad, T. S. Y. Choong, T. G. Chuah, R. Yunus and Y. H. T. Yap, Chem. Eng. J., 164, 178 (2010).

    Article  CAS  Google Scholar 

  11. S. C. Kheok and E. E. Lim, J. Am. Oil Chem. Soc., 59, 129 (1982).

    Article  CAS  Google Scholar 

  12. P. Falaras, I. Kovanis, F. Lezou and G. Seiragakis, Clay Miner., 34, 221 (1999).

    Article  CAS  Google Scholar 

  13. K. S. Low, K. S., C. K. Lee and L. Y. Kong, J. Chem. Technol. Biotechnol., 72, 67 (1998).

    Article  CAS  Google Scholar 

  14. M. Z. B. Hussein, D. Kuang, Z. Zainal and T. K. Teck, J. Colloid Interface Sci., 235, 93 (2001).

    Article  PubMed  Google Scholar 

  15. E. García-Bordejé, F. Kapteijn and J. A. Moulijn, Carbon, 40, 1079 (2002).

    Article  Google Scholar 

  16. E. García-Bordejé, M. J. Lázaro, R. Moliner, P. M. Álvarez, V. Gómez-Serrano and J. L. G. Fierro, Carbon, 44, 407 (2006).

    Article  Google Scholar 

  17. K. P. Gierszal and M. Jaroniec, J. Am. Oil Chem. Soc., 128, 10026 (2006).

    Article  CAS  Google Scholar 

  18. W. Cheah, S. K. Hosseini, M. A. Khan, T. G. Chuah and T. S. Y. Choong, Chem. Eng. J., 215, 747 (2013).

    Article  Google Scholar 

  19. K. M. de Lathouder, J. Bakker, M. T. Kreutzer, F. Kapteijn, J. A. Moulijn and S. A. Wallin, Chem. Eng. Sci., 59, 5027 (2004).

    Article  CAS  Google Scholar 

  20. S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk and H. A. Andreas, Carbon, 48, 1252 (2010).

    Article  CAS  Google Scholar 

  21. S. Hosseini, M. A. Khan, M. R. Malekbala, W. Cheah and T. S. Y. Choong, Chem. Eng. J., 171, 1124 (2011).

    Article  CAS  Google Scholar 

  22. Y. Wan, X. Cui and Z. Wen, J. Hazard. Mater., 198, 216 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. M. Kruk, M. Jaroniec, C. H. Ko and R. Ryong, Chem. Mater., 12, 1961 (2000).

    Article  CAS  Google Scholar 

  24. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater., 13, 677 (2001).

    Article  CAS  Google Scholar 

  25. Y. P. Teoh, M. A. Khan and T. S. Y. Choong, Chem. Eng. J., 217, 248 (2013).

    Article  CAS  Google Scholar 

  26. Y. F. Jia and K. M. Thomas, Langmuir, 16, 1114 (2000).

    Article  CAS  Google Scholar 

  27. Y. Chen, Q. Chen, L. Song, H. P. Li and F. Z. Hou, Micropor. Mesopor. Mater., 122, 7 (2009).

    Article  CAS  Google Scholar 

  28. G. P. Hao, W. C. Li, S. Wang, G. H. Wang, L. Qi and A. H. Lu, Carbon, 49, 3762 (2011).

    Article  CAS  Google Scholar 

  29. I. A. W. Tan, A. L. Ahmad and B. H. Hameed, J. Hazard. Mater., 154, 337 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. I. Langmuir, J. Am. Oil Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  31. G. McKay, M. J. Bino and A. R. Altamemi, Water Res., 19, 491 (1985).

    Article  CAS  Google Scholar 

  32. H. Freundlich, J. Phys. Chem., 57, 1100 (1906).

    Google Scholar 

  33. K. Fytianos, E. Voudrias and E. Kokkalis, Chemosphere, 40, 3 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. G. Kaynak, M. Ersoz and H. Kara, J. Colloid Interface Sci., 280, 131 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. K. Boki, M. Kubo, N. Kawasaki and H. Mori, J. Am. Oil Chem. Soc., 69, 372 (1992).

    Article  CAS  Google Scholar 

  36. K. Boki, H. Mori and N. Kawasaki, J. Am. Oil Chem. Soc., 71, 595 (1994).

    Article  CAS  Google Scholar 

  37. G. E. Christidis and S. Kosiari, Clays Clay Miner., 51, 327 (2003).

    Article  CAS  Google Scholar 

  38. S. Lagergren, Sven. Vetenskapsakad. Handingarl., 24, 1 (1898).

    Google Scholar 

  39. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).

    Article  CAS  Google Scholar 

  40. W. J. Weber Jr. and J. C. Morris, J. Sanitary Eng. Division, 89, 31 (1963).

    Article  Google Scholar 

  41. N. Sarier and Ç. Güler, J. Am. Oil Chem. Soc., 65, 776 (1988).

    Article  CAS  Google Scholar 

  42. M. Alkan, Ö. Demirbaş and M. Doğan, Micropor. Mesopor. Mater., 101, 388 (2007).

    Article  CAS  Google Scholar 

  43. M. E. Argun, S. Dursun, C. Ozdemir and M. Karatas, J. Hazard. Mater., 141, 77 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. I. A. W. Tan, B. H. Hameed and A. L. Ahmad, Chem. Eng. J., 127, 111 (2007).

    Article  CAS  Google Scholar 

  45. F. C. Wu, R. L. Tseng and R. S. Juang, J. Colloid Interface Sci., 283, 49 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. V. C. Srivastava, I. D. Mall and I. M. Mishra, J. Hazard. Mater., 134, 257 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. B. E. Wang, Y. Y. Hu, L. Xie and L. Peng, Bioresour. Technol., 99, 794 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. E. Sabah, M. Çinar and M. S. Çelik, Food Chem., 100, 1661 (2007).

    Article  CAS  Google Scholar 

  49. A. K. Biswas, J. Sahoo and M. K. Chatli, LWT — Food Sci. Technol., 44, 1809 (2011).

    Article  CAS  Google Scholar 

  50. N. Zhang, H. Qiu, Y. Si, W. Wang and J. Gao, Carbon, 49, 827 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Putra Malaysia for financial support via Geran Putra Berimpak (UPM.RMC.800-3/3/1/GPB/2021/9696400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Shean-Yaw Choong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

How, CK., Soltani, S., Chuah, TG. et al. Adsorption properties of β-carotene on mesoporous carbon-coated honeycomb monolith: Kinetics, thermodynamics, and regeneration studies. Korean J. Chem. Eng. 39, 3109–3120 (2022). https://doi.org/10.1007/s11814-022-1220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1220-2

Keywords

Navigation