Skip to main content
Log in

The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR)

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the effects of silica nanoparticle (NP) on nanofluid flooding for enhanced oil recovery. All NPs used in experiments were identically surface modified with PSS-co-MA and a zwitterionic surfactant. In core flooding experiments, the oil production from Berea Sandstone showed an increasing trend as the NP concentration increased within the range of 0.1 to 2.0 wt%. This result was closely associated with variance of interfacial tension (IFT) and contact angle (CA). IFT continued to decrease as the NP concentration increased until 2.0 wt%. However, IFT cannot further decrease with an increase in the NP concentration beyond 2.0 wt%, because total interaction energy may be reduced due to the decrease of electrostatic repulsion force by the closer spacing between NPs. When combined with silica nanofluid soaking, the CA of the rock/oil/nanofluids increased with increasing NP concentration; this indicated wettability alteration to a more water-wet condition caused by an enhanced fluid ability to spread silica NPs along the rock surfaces. Because of this effect, the capillary pressure is expected to be sufficiently reduced by nanofluid flooding, compared with brine flooding. However, at higher NP concentration, the NPs caused permeability reduction and an increased pressure drop attributable to the residual NPs in rock pores. This result implies additional oil recovery attributable to improved sweep efficiency related to the log jamming phenomenon caused by the residual NPs, as well as the IFT reduction and wettability alteration, thus leading to enhanced oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Y. Rezk and N. K. Allam, Ind. Eng. Chem. Res., 58, 16287 (2019).

    Article  CAS  Google Scholar 

  2. S. Li, L. Hendraningrat and O. Torsaeter, The international petroleum technology conference, Beijing, China, March 26–28 (2013).

  3. V. Y. Rudyak and S. L. Krasnolutskii, Phys. Lett. A, 378, 1845, (2014).

    Article  CAS  Google Scholar 

  4. P. C. Mishra, S. Mukherjee, S. K. Nayak and A. Panda, Int. Nano Lett., 4, 109 (2014).

    Article  CAS  Google Scholar 

  5. C. Metin, R. T. Bonnecaze and Q. P. Nguyen, SPE Res. Eval. Eng., 16, 327 (2013).

    Article  CAS  Google Scholar 

  6. H. Fan and A. Striolo, Phys. Rev. E., 86, 051610 (2011).

    Article  Google Scholar 

  7. S. Betancur, L. J. Giraldo, F. Carrasco-Marín, M. Riazi, E. J. Manrique, H. Quintero, H. A. García, C. A. Franco-Ariza and F. B. Cortés, ACS Omega, 4, 16171 (2019).

    Article  CAS  Google Scholar 

  8. L. S. de Lara, M. F. Michelon, C. O. Metin, Q. P. Nguyen and C. R. Miranda, J. Chem. Phys., 136, 164702 (2012).

    Article  Google Scholar 

  9. A. Bila and O. Torsaeter, Energies, 13, 5720 (2020).

    Article  CAS  Google Scholar 

  10. X. Sun, Y. Zhang, G. Chen and Z. Gai, Energies, 10, 345 (2017).

    Article  Google Scholar 

  11. Z. Hu, S. M. Azmi, G. Raza, P. W. J. Glover and D. Wen, Energy Fuels, 30, 2791 (2016).

    Article  CAS  Google Scholar 

  12. H. A. Son and T. Ahn, Appl. Sci., 11, 524 (2021).

    Article  CAS  Google Scholar 

  13. B. Peng, L. Zhang, J. Luo, P. Wang, B. Ding, M. Zeng and Z. Cheng, RSC Adv., 7, 32246 (2017).

    Article  CAS  Google Scholar 

  14. B. Yuan, W. Wang, R. G. Moghanloo, Y. Su, K. Wang and M. Jiang, Energy Fuels, 31, 795 (2017).

    Article  CAS  Google Scholar 

  15. B. Ju and T. Fan, Powder Technol., 192, 195 (2009).

    Article  CAS  Google Scholar 

  16. L. Hendraningrat, S. Li and O. Torsaeter, The SPE russian oil and gas exploration and production technical conference and exhibition, Moscow, Russia, 16–18 October (2012).

  17. B. Ju, T. Fan and Z. Li, J. Pet. Sci. Eng., 86, 206 (2012).

    Article  Google Scholar 

  18. K. Li, D. Wang and S. Jiang, Oil Gas Sci. Technol., 73, 37 (2018).

    Article  CAS  Google Scholar 

  19. S. Lim and D. Wasan, J. Colloid Interface Sci., 500, 96 (2017).

    Article  CAS  Google Scholar 

  20. H. Eltoum, Y. L. Yang and J. R. Hou, Pet. Sci., 18, 136 (2021).

    Article  CAS  Google Scholar 

  21. S. K. Choi, H. A. Son, H. T. Kim and J. W. Kim, Energy Fuels, 31, 7777 (2017).

    Article  CAS  Google Scholar 

  22. H. Zhang, A. Nikolov and D. Wasan, Energy Fuels, 28, 3002 (2014).

    Article  CAS  Google Scholar 

  23. D. T. Wasan and A. D. Nikolov, Nature, 423, 156 (2003).

    Article  CAS  Google Scholar 

  24. A. Nikolov, P. Wu and D. Wasan, Adv. Colloid Interface Sci., 264, 1 (2019).

    Article  CAS  Google Scholar 

  25. J. Zhou, Y. Wang, J. Geng and D. Jing, Phys. Fluids, 30, 072107 (2018).

    Article  Google Scholar 

  26. L. Yuan, Y. Zhang and H. Dehghanpour, Energy Fuels, 35, 7787 (2021).

    Article  CAS  Google Scholar 

  27. M. H. U. Bhauiyan, R. Saidur, M. A. Amalina, R. M. Mostafizur and A. K. M. S. Islam, Procedia Eng., 105, 431 (2015).

    Article  Google Scholar 

  28. M. Radiom, C. Yang and W. K. Chan, The international society for optical engineering, Singapore, 18–20 April (2010).

  29. B. J. Zhu, W. L. Zhao, J. K. Li, Y. X. Guan and D. D. Li, Mater. Sci. Forum, 688, 266 (2011).

    Article  CAS  Google Scholar 

  30. S. Tanvir and L. Qiao, Nanoscale Res. Lett., 7, 1 (2012).

    Article  Google Scholar 

  31. H. A. Son and T. H. Lee, Appl. Sci., 11, 7184 (2021).

    Article  CAS  Google Scholar 

  32. T. Zhang, M. J. Murphy, H. Yu, H. G. Bagaria, K. Y. Yoon, B. M. Nielson, C. W. Bielawski, K. P. Johnston, C. Huh and S. L. Bryant, SPE J., 20, 667 (2015).

    Article  Google Scholar 

  33. H. Yu, Y. He, P. Li, S. Li, T. Zhang, E. Rodriguez-Pin, S. Du, C. Wang, S. Cheng and C. W. Bielawski, Sci. Rep., 5, 8702 (2015).

    Article  CAS  Google Scholar 

  34. H. A. Son, K. Y. Yoon, G. J. Lee, J. W. Cho, S. K. Choi, J. W. Kim, K. C. Im, H. T. Kim, K. S. Lee and W. M. Sung, J. Pet. Sci. Eng., 126, 152 (2015).

    Article  CAS  Google Scholar 

  35. K. Y. Yoon, H. A. Son, S. K. Choi, J. W. Kim, W. M. Sung and H. T. Kim, Energy Fuels, 30, 2628 (2016).

    Article  CAS  Google Scholar 

  36. F. Matter, A. L. L. Barron and M. Niederberger, Nano Today, 30, 100827 (2020).

    Article  CAS  Google Scholar 

  37. F. Reincke, S. G. Hickey, W. K. Kegel and D. Vanmaekelbergh, Angew. Chem., 43, 458 (2004).

    Article  CAS  Google Scholar 

  38. L. Qi, C. Song, T. Wang, Q. Li, G. J. Hiraski and R. Verduzco, Langmuir, 34, 652 (2018).

    Google Scholar 

  39. L. Qi, H. ShamsiJazeyi, G. Ruan, J. A. Mann, Y. H. Lin, C. Song, Y. Ma, L. Yang, J. M. Tour, G. J. Hirasaki and R. Verduzco, Energy Fuels, 31, 1339 (2017).

    Article  CAS  Google Scholar 

  40. M. Moosavi, E. K. Goharshadi and A. Youssefi, J. Heat Mass Transf., 31, 599 (2010).

    CAS  Google Scholar 

  41. A. Chengara, A. Nikolov, D. T. Wasan and A. Trokhymchuk, J. Colloid Interface Sci., 280, 192 (2005).

    Article  Google Scholar 

  42. J. Q. Shi, Z. Xue and S. Durucan, Energy Procedia, 4, 5001 (2011).

    Article  CAS  Google Scholar 

  43. H. W. Brown, Petroleum Trans. AIME, 192, 67 (1951).

    Google Scholar 

  44. T. Ahmed, Reservoir engineering handbook (10th ed.), Gulf Professional Publishing, Elsevier (2010).

  45. F. Duan, D. Kwek and A. Crivoi, Nanoscale Res. Lett., 6, 1 (2011).

    Article  Google Scholar 

  46. L. W. Lake, Enhanced oil recovery, United Sates, Prentice Hall (1989).

    Google Scholar 

  47. T. Zhang, M. Roberts, S.L. Bryant and C. Huh, The SPE International Symposium Oilfield Chemistry, Woodlands, TX, April 20–22 (2009).

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2019R1F1A1056632). This work was also supported by the research fund of the project of the Korea Institute of Geoscience and Mineral Resources (GP2020-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, H.A., Jang, Y. & Lee, T. The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR). Korean J. Chem. Eng. 39, 3286–3294 (2022). https://doi.org/10.1007/s11814-022-1216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1216-y

Keywords

Navigation