Abstract
The demand for semiconductors and the necessity of developing the next-generation semiconductor have skyrocketed with recent technological advancements, such as next-generation mobile networks, cloud computing, the Internet of Things, and artificial intelligence. Accordingly, a new type of semiconductor cleaning technique that can minimize environmental impact and physical harm to the exceedingly thin structures in semiconductor chips must be developed. This work proposes a cleaning strategy for particle contamination on semiconductor wafer surfaces by utilizing jet flow created by bubble oscillation constrained in arrays of microcylinders. The variation in the maximum jet flow velocity caused by single bubble oscillation constrained in a microcylinder, which is affected by physical factors, such as applied voltage, frequency, and microcylinder dimensions, has been investigated. A wafer cleaning apparatus that comprised 9×9 arrays of microcylinders was designed based on experimental data on single bubble oscillation constrained in a microcylinder. The maximum jet flow velocity for the multi-arrays of microcylinders can be attained up to 148.5 mm/s, which is nearly five times the maximum value obtained from a single cylinder, even with a lower voltage applied than with a single microcylinder. The wafer cleaning apparatus removes particulates with different wettabilities and sizes from contaminated semiconductor wafers successfully with a high cleaning efficiency of up to 92.5%. The current effort makes an important contribution to the development of semiconductor cleaning techniques that can meet the requirements of current and next-generation semiconductor manufacturing in terms of yield, stability, and environmental pollution.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
V. B. Menon, Particle control for semiconductor manufacturing, 1st ed., Routledge, London (1990).
K. Qin and Y. Li, J. Colloid Interface Sci., 261, 569 (2003).
G. W. Gale, H. Cui and K. A. Reinhardt, Handbook of silicon wafer cleaning technology, 3rd ed., William Andrew, New York (2018).
D. Hymes, I. Malik, J. Zhang and R. Emami, Solid State Technol., 40, 209 (1997).
K. Xu, R. Vos, G. Vereecke, G. Doumen, W. Fyen, P. W. Mertens, M. M. Heyns, C. Vinckier, J. Fransaer and F. Kovacs, J. Vac. Sci. Technol. B, 23, 2160, (2005).
T. Kuehn, D. Kittelson, Y. Wu and R. Gouk, J. Aerosol. Sci., 27, 427 (1996).
G. Gale and A. Busnaina, Part. Sci. Technol., 13, 197 (1995).
K. Yamamoto, A. Nakamura and U. Hase, IEEE Trans. Semicond. Manuf., 12, 288 (1999).
T. Hattori, Ultraclean surface processing of silicon wafers, Springer, Heidelberg (1998).
X. Li, A. J. Strojwas, A. L. Swecker, M. Reddy, L. Milor and Y. Lin, Proc. SPIE, 3216, 167 (1997).
H. F. Okorn-Schmidt, F. Holsteyns, A. Lippert, D. Mui, M. Kawaguchi, C. Lechner, P. E. Frommhold, T. Nowak, F. Reuter, M. B. Piqué, C. Cairós and R. Mettin, ECS J. Solid State Sci. Technol., 3, N3069 (2013).
M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech., 9, 145 (1977).
W. Lauterborn and T. Kurz, Rep. Prog. Phys., 73, 106501 (2010).
A. J. B. Milne, B. Defez, M. Cabrerizo-Vílchez and A. Amirfazli, Adv. Colloid Interface Sci., 203, 22 (2014).
A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman and J. Xu, Lab Chip, 12, 4216 (2012).
K. Ryu, S. K. Chung and S. K. Cho, J. Assoc. Lab. Autom., 15, 163 (2010).
A. R. Tovar, M. V. Patel and A. P. Lee, Microfluid. Nanofluid., 10, 1269 (2011).
M. V. Patel, I. A. Nanayakkara, M. G. Simon and A. P. Lee, Lab Chip, 14, 3860 (2014).
R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale and P. Grodzinski, Lab Chip, 2, 151 (2002).
S. K. Chung, Y. Zhao and S. K. Cho, J. Micromech. Microeng., 18, 095009 (2008).
S. K. Chung and S. K. Cho, J. Micromech. Microeng., 18, 125024 (2008).
S. K. Chung and S. K. Cho, Microfluid. Nanofluid., 6, 261 (2009).
J. O. Kwon, J. S. Yang, S. J. Lee, K. Rhee and S. K. Chung, J. Micromech. Microeng., 21, 115023 (2011).
S. K. Chung, J. O. Kwon and S. K. Cho, J. Adhes. Sci. Technol., 26, 1965 (2012).
K. H. Lee, J. H. Lee, J. M. Won, K. Rhee and S. K. Chung, Sens. Actuator A-Phys, 188, 442 (2012).
J. H. Shin, J. Seo, J. Hong and S. K. Chung, Sens. Actuator B-Chem., 246, 415 (2017).
Z. Dong, C. Yao, X. Zhang, J. Xu, G. Chen, Y. Zhao and Q. Yuan, Lab Chip, 15, 1145 (2015).
Y. Chen and S. Lee, Integr. Comp. Biol., 54, 959 (2014).
J. S. Oh, Y. S. Kwon, K. H. Lee, W. Jeong, S. K. Chung and K. Rhee, Comput. Biol. Med., 44, 37 (2014).
P. Marmottant and S. Hilgenfeldt, Nature, 423, 153 (2003).
S. L. Gac, E. Zwaan, A. van den Berg and C.-D. Ohl, Lab Chip, 7, 1666 (2007).
S. K. Chung, K. Rhee and S. K. Cho, Int. J. Precis. Eng. Manuf., 11, 991 (2010).
Y. Li, X. Liu, Q. Huang, A. T. Ohta and T. Arai, Lab Chip, 21, 1016 (2021).
A. Ozcelik, J. Rich and T. J. Huang, Lab Chip, 22, 297 (2022).
J. Feng, J. Yuan and S. K. Cho, Lab Chip, 16, 2317 (2016).
J. Feng, J. Yuan and S. K. Cho, Lab Chip, 15, 1554 (2015).
T. Qiul, S. Palagil, A. G. Markl, K. Meldel, F. Adams and P. Fischer, Appl. Phys. Lett., 109, 191602 (2016).
L. Ren, N. Nama, J. M. McNeill, F. Soto, Z. Yan, W. Liu, W. Wang, J. Wang and T. E. Mallouk, Sci. Adv., 5, eaax3084 (2019).
F. W. Liu, Y. Zhan and S. K. Cho, J. Micromech. Microeng., 31, 084001 (2021).
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A107488812).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Conflict of Interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Kim, D., Hong, J. & Chung, S.K. Acoustic bubble array-induced jet flow for cleaning particulate contaminants on semiconductor wafers. Korean J. Chem. Eng. 39, 3261–3266 (2022). https://doi.org/10.1007/s11814-022-1214-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-022-1214-0