Skip to main content
Log in

Species resolved interaction mechanism between graphene oxide and Cu(II) in aqueous solution with implications on wastewater remediation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Heavy metals discharged into water by industrial activity give rise to severe environmental pollution. Herein, graphene oxide (GO) was prepared based on an improved Hummers method and utilized as adsorbent to remove aqueous Cu(II). The “species resolved” adsorption mechanism was deeply inspected via combining multiple explorations extracted from Cu(II) species distribution, GO surface charge, adsorption experiment and fitting, hard-soft acid-base (HSAB) theory, FTIR and XPS spectra. Different adsorption mechanism resolved by Cu(II) species was proposed, corresponding to different pH range. (1) When pH<8, bare Cu2+ is the dominant Cu(II) species, ion exchange and chemical complexation are the adsorption mechanism. (2) When pH=8, Cu(OH)2 is the dominant Cu(II) species, precipitation, ion exchange and chemical complexation are the adsorption mechanism. (3) When pH>8, Cu(OH) 3 is the dominant Cu(II) species, electrostatic attraction is the adsorption mechanism. Electron transfer and energy lowering calculated based on the HSAB theory demonstrates, OH is stronger than COOH regarding binding affinity towards Cu(II). As for adsorption efficiency, adsorption of Cu(II) onto GO equilibrated in 12 min, with adsorption percent and quantity 92.32% and 553.90 mg·g−1, respectively. Findings of this work may shed light on the interaction mechanism of graphene oxide with heavy metals. Accordingly, these as clarified mechanisms may provide guidance for developing efficient adsorbent based on graphene for heavy metal scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

i:

i=0, e, t, signifies the start, equilibrium and any moment t of adsorption, respectively, as in Eqs. (2)–(3).

Ci :

concentration of Cu(II) solution [mg·L−1]

D:

adsorbent dosage [mg·L−1]

Ri :

adsorption percent [%]

Qi :

adsorption quantity [mg·g−1]

V:

volume of Cu(II) solution [mL]

m:

adsorbent mass [g]

ΔN:

electron transfer induced by adsorption

ΔE:

energy lowering induced by adsorption

XA :

absolute electronegativity of acid or adsorbate

XB :

absolute electronegativity of base or adsorbent

η A :

absolute hardness of acid or adsorbate

η B :

absolute hardness of base or adsorbent

Qmax :

monolayer adsorption capacity given by Langmuir fitting or theoretical maximum adsorption capacity given by D-R fitting [mg·g−1]

KL :

Langmuir adsorption constant [L·mg−1]

RL :

separation or equilibrium factor within the framework of Langmuir model

KF :

Freundlich constant related to adsorption capacity

n:

Freundlich constants related to adsorption intensity

R:

gas constant [8.314 J·mol−1·K−1]

T:

absolute temperature [K]

AT :

Temkin constant corresponds to the adsorption heat [J·mol−1]

BT :

Temkin equilibrium binding constant relates to the maximum binding energy [L·g−1]

E:

mean free energy of adsorption within the framework of D-R model [KJ·mol−1]

ε :

Polanyi potential within the framework of D-R model

β DR :

constant relates to E within the framework of D-R model [mol2·J−2]

k1 :

pseudo-first-order rate constant [min−1]

k2 :

pseudo-second-order rate constant [g·mg−1·min−1]

Kid :

intra-particle diffusion rate constant [mg·g−1·min−0.5]

C:

constant related to the thickness of the boundary layer within the framework of intra-particle diffusion model [mg·g−1]

k0 :

constant within the framework of Bangham model

α :

constant within the framework of Bangham model or initial adsorption rate within the framework of Elovich model [mg·g−1·s−1]

β Elovich :

desorption constant within the framework of Elovich model [g·mg−1]

KΘ :

adsorption equilibrium constant [L·g−1]

ΔG:

adsorption free energy change [KJ·mol−1]

ΔH:

adsorption enthalpy change [KJ·mol−1]

ΔS:

adsorption entropy change [J·K−1·mol−1]

R2 :

correlation coefficient of adsorption fitting

References

  1. M. Verma, I. Lee, J. Oh, V. Kumar and H. Kim, Chemosphere, 287, 132385 (2022).

    Article  Google Scholar 

  2. P. Goyal, C. S. Tiwary and S. K. Misra, J. Environ. Manage., 277, 111469 (2021).

    Article  Google Scholar 

  3. W. Z. Zeng, W. X. Guo, B. Li, Z. S. Wei, D. D. Dionysiou and R. Y. Xiao, J. Hazard. Mater., 408, 124868 (2021).

    Article  Google Scholar 

  4. R. Cstro-Munoz, L. L. Gonzalez-Melgoza and O. Garcia-Depraect, Chemosphere, 270, 129421 (2021).

    Article  Google Scholar 

  5. D. Liu, Y. Yuan, Y. Q. Wei, H. Zhang, Y. X. Si and F. Zhang, J. Eviron. Sci., 116, 4351 (2022).

    Google Scholar 

  6. Y. Gomravi, A. Karimi and H. Azimi, Korean J. Chem. Eng., 38, 1843 (2021).

    Article  Google Scholar 

  7. P. Sherugar, M. Padaki, N. S. Naik, S. D. George and D. H. K. Murthy, Chemosphere, 287, 132085 (2022).

    Article  Google Scholar 

  8. T. T. Zhang, W. Wang, Y. L. Zhao, H. Y. Bai, T. Wen, S. C. Kang, G. S. Song, S. X. Song and S. Komarneni, Chem. Eng. J., 420, 127574 (2021).

    Article  Google Scholar 

  9. W. Y. Gao, M. R. Razanajatovo, Y. Song, X. Zhao, Z. Y. Zhao, Q. M. Peng, T. F. Jiao, X. J. Liu and Q. R. Zhang, Chem. Eng. J., 429, 132599 (2022).

    Article  Google Scholar 

  10. X. Z. Jia, M. Peydayesh, Q. Huang and R. Mezzenga, Small, 184, 2105502 (2022).

    Article  Google Scholar 

  11. W. Zhou, P. T. Wu, L. Zhang, D. L. Zhu, X. N. Zhao and Y. H. Cai, J. Hazard. Mater., 421, 126721 (2022).

    Article  Google Scholar 

  12. J. Yan and R. Li, Sci. Total Environ., 813, 152604 (2022).

    Article  Google Scholar 

  13. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  Google Scholar 

  14. H. T. Yu, B. W. Zhang, C. K. Bulin, R. H. Li and R. G. Xing, Sci. Rep., 6, 36143 (2016).

    Article  Google Scholar 

  15. C. K. Bulin, B. W. Zhang, T. Guo, Z. Y. Ma, B. Li, Y. H. Zhang, R. G. Xing and X. Ge, Res. Chem. Intermediate, 47, 3825 (2021).

    Article  Google Scholar 

  16. T. Guo and C. K. Bulin, J. Phys. Chem., 158, 110251 (2021).

    Google Scholar 

  17. R. G. Pearson, J. Am. Chem. Soc., 84, 16 (1962).

    Article  Google Scholar 

  18. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983).

    Article  Google Scholar 

  19. R. G. Pearson, J. Org. Chem., 27, 734 (1988).

    Google Scholar 

  20. K. Gupta, S. R. Yasa, A. Khan, O. P. Sharma and O. P. Khatri, J. Colloid Interface Sci., 607, 1973 (2022).

    Article  Google Scholar 

  21. Y. Kuang, Z. Y. Zhang and D. Y. Wu, Sci. Total Environ., 806, 151258 (2022).

    Article  Google Scholar 

  22. S. Y. Xiong, Z. J. Wu and Z. L. Li, Chemosphere, 287, 132418 (2022).

    Article  Google Scholar 

  23. P. Joshi, O. P. Sharma, S. k. Ganguly, M. Srivastava and O. P. Khatri, J. Colloid Interface Sci., 608, 2870 (2022).

    Article  Google Scholar 

  24. S. Singh, A. G. Anil, S. Khasnabis, V. Kumar, B. Nath, V. Adiga, T. S. S. K. Naik, S. Subramanian, V. Kumar, J. Singh and P. C. Ramamurthy, Environ. Res., 203, 111891 (2022).

    Article  Google Scholar 

  25. P. Ammendola, F. Raganati and R. Chirone, Chem. Eng. J., 322, 302313 (2017).

    Article  Google Scholar 

  26. S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang and X. D. Li, J. Environ. Chem. Eng., 51, 601611 (2017).

    Google Scholar 

  27. T. A. Saleh, A. Sa and M. Tuzen, Chem. Eng. J., 307, 230238 (2017).

    Article  Google Scholar 

  28. M. A. Badawi, N. A. Negm, M. T. H. A. Kana, H. H. Hefni and M. M. A. Moneem, Int. J. Biol. Macromol., 99, 465476 (2017).

    Article  Google Scholar 

  29. Y.Q. Zheng, B. Cheng, W. You, J.G. Yu and W. Ho, J. Hazard. Mater., 369, 214225 (2019).

    Article  Google Scholar 

  30. Y. F. Zhang, L. Wu, H. L. Deng, N. Qiao, D. S. Zhang, H. Lin and Y. Y. Chen, J. Environ. Chem. Eng., 9, 106008 (2021).

    Article  Google Scholar 

  31. S. Anuma, P. Mishra and B. R. Bhat, J. Hazard. Mater., 416, 125929 (2021).

    Article  Google Scholar 

  32. X. Hao, S. Yang, T. E and Y. Li, J. Hazard. Mater., 424, 127680 (2022).

    Article  Google Scholar 

  33. J. H. Yan and K. R. Li, Sep. Purif. Technol., 277, 119469 (2021).

    Article  Google Scholar 

  34. J. Q. Luo, C. J. Fan and X. D. Zhou, J. Appl. Polym. Sci., 138, 50065 (2021).

    Article  Google Scholar 

  35. M. L. Cao, Y. Li, H. Yin and S. Shen, Ecotoxicol. Environ. Saf., 173, 2836 (2019).

    Article  Google Scholar 

  36. R. L. White, C. M. White, H. Turgut, A. Massoud and Z. R. Tian, J. Taiwan Inst. Chem. Eng., 85, 1828 (2018).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the research project for universities, Inner Mongolia Autonomous Region, China (NJZY21392) and the key research project of Inner Mongolia Autonomous Region, China (2020ZD17).

Author information

Authors and Affiliations

Authors

Contributions

Chaoke Bulin conceptualized the whole work and wrote the article. Ting Guo and Rongxiang Zheng supervised the experimental work. Ruichao Zhao, Bangwen Zhang and Fang Liu Validatied and approved the final manuscript.

Corresponding authors

Correspondence to Chaoke Bulin or Ruichao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulin, C., Guo, T., Zhao, R. et al. Species resolved interaction mechanism between graphene oxide and Cu(II) in aqueous solution with implications on wastewater remediation. Korean J. Chem. Eng. 40, 162–174 (2023). https://doi.org/10.1007/s11814-022-1211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1211-3

Keywords

Navigation