Skip to main content
Log in

A facile method for efficient synergistic oxidation of Fe2+ in phosphorus-sulfur mixed acid system with a mixture of oxygen and ozone

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The recovery of iron phosphate involves the addition of oxidizer to oxidize Fe2+ in the spent LiFePO4 (LFP) material to Fe3+ and the agent commonly used is hydrogen peroxide (H2O2). Nevertheless, H2O2 has disadvantages of high price, easy decomposition and low utilization efficiency. In this manuscript, a facile method is proposed for efficient synergistic oxidation of Fe2+ in spent LFP leachate with a mixture of oxygen and ozone. Specifically, we found by thermodynamic computations that the dominant oxidation groups of ozone during oxidation varied with acidity. The oxidation would produce a large number of iron-phosphate complex groups (Fe3H6(PO4) 3+4 , FeH8(PO4) 4 and Fe2HPO 4+4 ) in the phosphorus-sulfur mixed acid system, leading to a paradoxical pH drop. The optimized conditions for H2O2 oxidation were explored. It was determined experimentally that oxidation by gas mixture and O2 belonged to the firstorder and second-order reactions with activation energies of 28.68 kJ/mol and 34.61 kJ/mol, respectively, which were both controlled by a mixture of chemical reaction and diffusion. The optimized oxidation method was finally determined by evaluating the cost and oxidation rate of the oxidizers. The results in this study offer a promising method for new low-cost and efficient Fe2+ oxidation for industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhou, L. Chen, Y. Chao, X. Li, G. Luo and W. Zhu, J. Energy Chem., 59, 431 (2021).

    Article  CAS  Google Scholar 

  2. S. Kim, J. Bang, J. Yoo, Y. Shin, J. Bae, J. Jeong, K. Kim, P. Dong and K. Kwon, J. Clean. Prod., 294, 126329 (2021).

    Article  CAS  Google Scholar 

  3. Y.-S. Lee, S.-J. Cho and M. Yoshio, Korean J. Chem. Eng., 23, 566 (2006).

    Article  CAS  Google Scholar 

  4. Y. Li, Q. Fu, H. Qin, K. Yang, J. Lv, Q. Zhang, H. Zhang, F. Liu, X. Chen and M. Wang, Korean J. Chem. Eng., 38, 2113 (2021).

    Article  CAS  Google Scholar 

  5. Y. Zhang, W. Sun, R. Xu, L. Wang and H. Tang, J. Clean. Prod., 285, 124905 (2021).

    Article  CAS  Google Scholar 

  6. Y. Yang, E. G. Okonkwo, G. Huang, S. Xu, W. Sun and Y. He, Energy Storage Mater., 36, 186 (2021).

    Article  Google Scholar 

  7. S. Sakultung, K. Pruksathorn and M. Hunsom, Korean J. Chem. Eng., 24, 272 (2007).

    Article  CAS  Google Scholar 

  8. Y. Zhao, X. Yuan, L. Jiang, J. Wen, H. Wang, R. Guan, J. Zhang and G. Zeng, Chem. Eng. J., 383, 123089 (2020).

    Article  CAS  Google Scholar 

  9. K. Turcheniuk, D. Bondarev, G. G. Amatucci and G. Yushin, Mater. Today, 42, 57 (2021).

    Article  CAS  Google Scholar 

  10. H. Ali, H. A. Khan and M. G. Pecht, J. Energy Storage, 40, 102690 (2021).

    Article  Google Scholar 

  11. W. B. Hawley and J. Li, J. Energy Storage, 25, 100862 (2019).

    Article  Google Scholar 

  12. Y. Wang, N. An, L. Wen, L. Wang, X. Jiang, F. Hou, Y. Yin and J. Liang, J. Energy Chem., 55, 391 (2021).

    Article  CAS  Google Scholar 

  13. F. Bella, S. De Luca, L. Fagiolari, D. Versaci, J. Amici, C. Francia and S. Bodoardo, Nanomaterials, 11, 810 (2021).

    Article  CAS  Google Scholar 

  14. M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero and A. Lamberti, Adv. Sustain. Syst., 6, 2100228 (2022).

    Article  CAS  Google Scholar 

  15. W. Qiao, B. Jin, W. Xie, M. Shao and M. Wei, J. Energy Chem., 69, 9 (2022).

    Article  CAS  Google Scholar 

  16. M. Alidoost, A. Mangini, F. Caldera, A. Anceschi, J. Amici, D. Versaci, L. Fagiolari, F. Trotta, C. Francia, F. Bella and S. Bodoardo, Chem. Eur. J., 28, e202104201 (2022).

    Article  CAS  Google Scholar 

  17. P. Mu, H. Zhang, T. Dong, H. Jiang, S. Zhang, C. Wang, J. Li, S. Dong and G. Cui, Chem. Eng. J., 437, 135032 (2022).

    Article  CAS  Google Scholar 

  18. M. A. A. M. Abdah, M. Mokhtar, L. T. Khoon, K. Sopian, N. A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella and M. S. Su’ait, Energy Rep., 7, 8677 (2021).

    Article  Google Scholar 

  19. M. K. Jeon and S.-W. Kim, Korean J. Chem. Eng., In press (2022), https://doi.org/10.1007/s11814-022-1117-0.

  20. M. K. Jeon, S.-W. Kim, H.-C. Eun, K. Lee, H. Kim and M. Oh, Korean J. Chem. Eng., 39, 1472 (2022).

    Article  CAS  Google Scholar 

  21. P. Meshram, B. D. Pandey and T. R. Mankhand, Chem. Eng. J., 281, 418 (2015).

    Article  CAS  Google Scholar 

  22. J. Li, X. Li, Q. Hu, Z. Wang, J. Zheng, L. Wu and L. Zhang, Hydrometallurgy, 99, 7 (2009).

    Article  CAS  Google Scholar 

  23. Y. Hua, S. Zhou, Y. Huang, X. Liu, H. Ling, X. Zhou, C. Zhang and S. Yang, J. Power Sources, 478, 228753 (2020).

    Article  CAS  Google Scholar 

  24. M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon and Y. Wang, Joule, 3, 2622 (2019).

    Article  CAS  Google Scholar 

  25. M. Pagliaro and F. Meneguzzo, Heliyon, 5, e01866 (2019).

    Article  Google Scholar 

  26. M. Khashij, M. Mehralian and Z. G. Chegini, Pigm. Resin Technol., 49, 363 (2020).

    Article  CAS  Google Scholar 

  27. P. Liu, H. Zhang, Y. Feng, F. Yang and J. Zhang, Chem. Eng. J., 240, 211 (2014).

    Article  CAS  Google Scholar 

  28. A. Aghaeinejad-Meybodi, A. Ebadi, S. Shafiei, A. Khataee and M. Rostampour, Environ. Technol., 36, 1477 (2015).

    Article  CAS  Google Scholar 

  29. Z. Zhao, Z. Liu, H. Wang, W. Dong and W. Wang, Chemosphere, 202, 238 (2018).

    Article  CAS  Google Scholar 

  30. V. Naddeo, C. S. Uyguner-Demirel, M. Prado, A. Cesaro, V. Belgiorno and F. Ballesteros, Environ. Technol., 36, 1876 (2015).

    Article  CAS  Google Scholar 

  31. X. Li, Y. Wang, J. Zhao, H. Wang, B. Wang, J. Huang, S. Deng and G. Yu, J. Hazard. Mater., 300, 298 (2015).

    Article  CAS  Google Scholar 

  32. J. Zhang, Y.-L. Zhang, Y.-N. Shi, J. Lin, P. Zhou, W.-Q. Zhang and J.-W. Xu, Ozone: Sci. Eng., 38, 150 (2016).

    Article  Google Scholar 

  33. A. Acosta-Rangel, M. Sánchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S. Polo, M. S. Berber-Mendoza and M. V. López-Ramón, J. Environ. Manage., 255, 109927 (2020).

    Article  CAS  Google Scholar 

  34. F. Wang, Z. Lu, L. Yang, Y. Zhang, Q. Tang, Y. Guo, X. Ma and Z. Yang, Chem. Commun., 49, 6626 (2013).

    Article  CAS  Google Scholar 

  35. C. Meng, K. Yang, X. Fu and R. Yuan, ACS Catal., 5, 3760 (2015).

    Article  CAS  Google Scholar 

  36. T. Kawabata, N. Fujisaki, T. Shishido, K. Nomura, T. Sano and K. Takehira, J. Mol. Catal. A: Chem., 253, 279 (2006).

    Article  CAS  Google Scholar 

  37. S.-I. Murahashi, Y. Oda and T. Naota, Tetrahedron Lett., 33, 7557 (1992).

    Article  CAS  Google Scholar 

  38. P. K. Saikia, P. P. Sarmah, B. J. Borah, L. Saikia and D. K. Dutta, J. Mol. Catal. A: Chem., 412, 27 (2016).

    Article  CAS  Google Scholar 

  39. J. Zang, Y. Ding, L. Yan, T. Wang, Y. Lu and L. Gong, Catal. Commun., 51, 24 (2014).

    Article  CAS  Google Scholar 

  40. W. Huang, B. C. Ma, H. Lu, R. Li, L. Wang, K. Landfester and K. A. I. Zhang, ACS Catal., 7, 5438 (2017).

    Article  CAS  Google Scholar 

  41. Y.-Z. Chen, Z. U. Wang, H. Wang, J. Lu, S.-H. Yu and H.-L. Jiang, J. Am. Chem. Soc., 139, 2035 (2017).

    Article  CAS  Google Scholar 

  42. M. Li, Z. Chen, Z. Wang and Q. Wen, Chemosphere, 217, 223 (2019).

    Article  CAS  Google Scholar 

  43. B. P. Oruê, A. B. Botelho Junior, J. A. S. Tenório, D. C. R. Espinosa and M. d. P. G. Baltazar, Ozone: Sci. Eng., 43, 324 (2021).

    Article  Google Scholar 

  44. X. Cao, T. A. Zhang, Y. Liu, W. Zhang, S. Li, G. Lv and X. Han, Nonferrous Met. Sci. Eng., 11, 1 (2020).

    Google Scholar 

  45. F. Jiang, B. Qiu and D. Sun, Chem. Eng. J., 370, 346 (2019).

    Article  CAS  Google Scholar 

  46. M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner, E. Salhi, R. Teichler, U. von Gunten, H. Siegrist and C. S. McArdell, Water Res., 129, 486 (2018).

    Article  CAS  Google Scholar 

  47. W. Jia, F. Wang, M. Wang, D. Wang, L. Zheng, A. Ding, B. Liu, X. Liang and H. U. Yu, S. N. Water Transfers Water Water Sci. Technol., 17, 113 (2019).

    Google Scholar 

  48. T. Tao, S. Shaoxian and Y. Jierong, Chin. J. Power Sources, 44, 17 (2020).

    Google Scholar 

  49. Y. Wang, Y. Lü, S. Wang and H. Du, Chin. J. Process Eng., 21, 877 (2021).

    Google Scholar 

  50. T. C. Yang and W. C. Neely, Anal. Chem., 58, 1551 (1986).

    Article  CAS  Google Scholar 

  51. G. F. Upelaar, R. T. Meijers, R. Hopman and J. C. Kruithof, Ozone: Sci. Eng., 22, 607 (2000).

    Article  Google Scholar 

  52. T. Loegager, J. Holcman, K. Sehested and T. Pedersen, Inorg. Chem., 31, 3523 (1992).

    Article  CAS  Google Scholar 

  53. P. Schulte, A. Bayer, F. Kuhn, T. Luy and M. Volkmer, Ozone: Sci. Eng., 17, 119 (1995).

    Article  CAS  Google Scholar 

  54. W.-b. Lou, Y. Zhang, Y. Zhang, S.-l. Zheng, P. Sun, X.-j. Wang, J.-z. Li, S. Qiao, Y. Zhang, M. Wenzel and J. J. Weigand, Trans. Nonferrous Met. Soc. China, 31, 817 (2021).

    Article  CAS  Google Scholar 

  55. W.-b. Lou, Y. Zhang, Y. Zhang, S.-l. Zheng, P. Sun, X.-j. Wang, S. Qiao, J.-z. Li, Y. Zhang, D.-y. Liu, M. Wenzel and J. J. Weigand, J. Alloys Compd., 856, 158148 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Inter-university Cooperation Project of General Undergraduate Colleges and Universities in Liaoning Province (China), the Key Deployment Projects of Chinese Academy of Sciences (No. ZDRW_CN_2020-1), and the Innovation Academy for Green Manufacture, Chinese Academy of Sciences (IAGM-2019-A15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-bo Lou.

Additional information

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1206_MOESM1_ESM.pdf

A facile method for efficient synergistic oxidation of Fe2+ in phosphorus-sulfur mixed acid system with a mixture of oxygen and ozone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Dy., Lou, Wb., Sun, Sn. et al. A facile method for efficient synergistic oxidation of Fe2+ in phosphorus-sulfur mixed acid system with a mixture of oxygen and ozone. Korean J. Chem. Eng. 39, 3323–3333 (2022). https://doi.org/10.1007/s11814-022-1206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1206-0

Keywords

Navigation