Skip to main content

Advertisement

Log in

Selective absorption of H2S and CO2 from simulated coke oven gas by aqueous blends of N-methyldiethanolamine and tetramethylammonium glycine

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Tetramethylammonium glycine ([N1111][Gly]) can be completely ionized into cation [N1111]+ and anion [Gly]- in aqueous solution. The anion contains an amino -NH2 and a carboxyl -COO-, both of which can react with hydrogen sulfide (H2S). Therefore, [N1111][Gly] was used to promote the selective absorption of H2S in coke oven gas (COG) by N-methyldiethanolamine (MDEA). The absorption performance and selectivity of H2S in the aqueous solution of MDEA-[N1111][Gly] were investigated. The effects of MDEA mass fraction, [N1111][Gly] mass fraction, temperature, H2S partial pressure and CO2 partial pressure on the absorption capacity and selectivity were clarified. The results showed that an aqueous solution of MDEA-[N1111][Gly] has good selectivity for H2S in COG. The absorption capacity was large and the mass fraction of the solute in the absorbent reached more than 0.55, thereby having outstanding advantages in the aspects of saving energy consumption and operating cost and having a good application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. China business intelligence network https://s.askci.com/data/MonthDetail/Index?zbId=a03010f&type=2&isYear=1&StartTime=&EndTime=&CityCode=, 2021 (accessed 18 July 2021).

  2. J. K. Park, S. Y. Lee, J. I. Kim, W. Um and C. Yoo, J. Environ. Chem. Eng., 9, 105037 (2021).

    Article  CAS  Google Scholar 

  3. G. P. Wang, China Metallurgy, 22, 25 (2012).

    CAS  Google Scholar 

  4. L. de Oliveira Carneiro, S. F. de Vasconcelos, G. W. de Farias Neto, R. P. Brito and K. D. Brito, Sep. Purif. Technol., 257, 117862 (2021).

    Article  CAS  Google Scholar 

  5. H. Yan and J. S. Tian, Fuel Chem. Process., 35, 25 (2004).

    Google Scholar 

  6. L. A. Kazak, A. F. Yarmoshik and V. M Li, Coke Chem., 61, 376 (2018).

    Article  Google Scholar 

  7. C. Q. Yan and L. R. Yu, Fuel. Chem. Process., 35, 26 (2004).

    Google Scholar 

  8. P. Huang and K. C. Ling, Coal Convers., 28, 64 (2005).

    CAS  Google Scholar 

  9. L. J. Zhang, Metallurgical Power, 3, 17 (2013).

    CAS  Google Scholar 

  10. P. Nasir and A. E. Mather, Can. J. Chem. Eng., 55, 715 (1977).

    Article  CAS  Google Scholar 

  11. C. F. Song, Q. L. Liu, N. Ji, S. Deng, J. Zhao and Y. Kitamura, Appl. Energ., 204, 353 (2017).

    Article  CAS  Google Scholar 

  12. F. Anu, Y. A. Rikov, G. L. Kuranov and N. A. Smirnova, Russ. J. Appl. Chem., 80, 515 (2007).

    Article  Google Scholar 

  13. M. H. Li and K. P. Shen, J. Chem. Eng. Data, 38, 105 (1993).

    Article  CAS  Google Scholar 

  14. J. R. An, P. F. Ma, J. F. Tang, X. Jiang, J. Li, G. J. Zhang and M. Y. Zhao, Chem. Ind. Eng. Prog., 35, 3866 (2016).

    Google Scholar 

  15. D. A. Glasscock and G. T. Rochelle, AIChE J., 39, 1389 (1993).

    Article  CAS  Google Scholar 

  16. B. P. Mandal, A. Biswas and S. Bandyopadhyay, Sep. Purif. Technol., 35, 191 (2004).

    Article  CAS  Google Scholar 

  17. M. Li, S. Zhang, P. Zhang, K. Qin, B. Xu, J. Zhou, C. Yuan, Q. Cao and H. Xiao, Chem. Eng. J., 436, 135251 (2022).

    Article  CAS  Google Scholar 

  18. A. Haghtalab and A. Afsharpour, Fluid Phase Equilib., 406, 10 (2015).

    Article  CAS  Google Scholar 

  19. D. W. Savage, E. W. Funk, W. C. Yu and G. Astarita, Ind. Eng. Chem. Fundamen., 25, 326 (1986).

    Article  CAS  Google Scholar 

  20. A. Kazemi, M. Malayeri, A. G. Kharaji and A. Shariati, J. Nat. Gas Sci. Eng., 20, 16 (2014).

    Article  CAS  Google Scholar 

  21. R. K. Abdulrahman and I. M. Sebastine, J. Nat. Gas Sci. Eng., 14, 116 (2013).

    Article  CAS  Google Scholar 

  22. X. F. Tian, L. M. Wang, D. Fu and C. Li, Energy Fuel, 33, 629 (2019).

    Article  CAS  Google Scholar 

  23. X. F. Tian, L. M. Wang and D. Fu, Energy Fuel, 33, 8413 (2019).

    Article  CAS  Google Scholar 

  24. X. F. Tian, L. M. Wang, P. Zhang, D. Fu and Z. Y. Wang, Environ. Sci. Pollut. R., 28, 5822 (2021).

    Article  CAS  Google Scholar 

  25. R. Sidi-Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Fürst and J. Gmehling, Fluid Phase Equilib., 218, 149 (2004).

    Article  CAS  Google Scholar 

  26. M. E. Rebolledo-Libreros and A. Trejo, Fluid Phase Equilib., 224, 83 (2004).

    Article  CAS  Google Scholar 

  27. J. Z. Xia, A. Kamps and G. Maurer, Fluid Phase Equilib., 207, 23 (2003).

    Article  CAS  Google Scholar 

  28. D. Speyer, A. Böttger and G. Maurer, Ind. Eng. Chem. Res., 51, 12549 (2012).

    Article  CAS  Google Scholar 

  29. Z. Q. Bi and L. S. Shen, Anhui Metallurgy, 2, 29 (2008).

    Google Scholar 

  30. B. Y. Zhang and D. X. Jin, Sci. Technol. Baotou Steel Co., 2, 4 (2001).

    Google Scholar 

  31. Z. Cai, Y. Ma, J. Zhang, W. Wu, Y. Cao, L. Jiang and K. Huang, Fuel, 313, 122664 (2022).

    Article  CAS  Google Scholar 

  32. Y. Cao, J. Zhang, Y. Ma, W. Wu, K. Huang and L. Jiang, ACS Sustain. Chem. Eng., 9, 7352 (2021).

    Article  CAS  Google Scholar 

  33. R. Giernoth, Angew. Chem. Int. Ed., 49, 2834 (2010).

    Article  CAS  Google Scholar 

  34. M. Damanafshan, B. Mokhtarani, M. Mirzaei, M. Mafi, A. Sharifi and A. H. Jalili, J. Chem. Eng. Data, 63 2135 (2018).

    Article  CAS  Google Scholar 

  35. A. Barati-Harooni, A. Najafi-Marghmaleki and A. H. Mohammadi, Int. J. Greenh. Gas Con., 63, 338 (2017).

    Article  CAS  Google Scholar 

  36. K. Huang, X. M. Zhang, L. S. Zhou, D. J. Tao and J. P. Fan, Chem. Eng. Sci., 173, 253 (2017).

    Article  CAS  Google Scholar 

  37. F. Liu, W. Chen, J. Mi, J. Y. Zhang, X. Kan, F. Y. Zhong, K. Huang, A. M. Zheng and L. Jiang, AIChE J., 65, e16574 (2019).

    Article  Google Scholar 

  38. M. Nematpour, A. H. Jalili, C. Ghotbi and D. Rashtchian, J. Nat. Gas Sci. Eng., 30, 583 (2016).

    Article  CAS  Google Scholar 

  39. L. Y. Wang, Y. L. Xu, Z. D. Li, Y. N. Wei and J. P. Wei, Energy Fuel, 32, 10 (2017).

    Article  Google Scholar 

  40. B. Seyedhosseini, M. Izadyar and M. R. Housaindokht, J. Phys. Chem. A., 121, 4352 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. D. Fu, P. Zhang and C. L. Mi, Energy, 101, 288 (2016).

    Article  CAS  Google Scholar 

  42. D. Fu and J. L. Xie, J. Chem. Thermodyn., 102, 310 (2016).

    Article  CAS  Google Scholar 

  43. Z. M. Zhou, G. H. Jing and L. J. Zhou, Chem. Eng. J., 204, 235 (2012).

    Article  Google Scholar 

  44. S. Aparicio and M. Atilhan, Energy Fuel, 24, 4989 (2015).

    Article  Google Scholar 

  45. W. Y. Lee, S. Y. Park, K. B. Lee and S. C. Nam, Energy Fuel, 34, 1992 (2020).

    Article  CAS  Google Scholar 

  46. J. G. Lu, Y. F. Zheng and D. L. He, Sep. Purif. Technol., 52, 209 (2006).

    Article  CAS  Google Scholar 

  47. A. H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseini-Jenab and V. Taghikhani,. J. Phys. Chem. B., 116, 2758 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. A. H. Jalili, M. Shokouhi, G. Maurer and M. Hosseini-Jenab, J. Chem. Thermodyn., 67, 55 (2013).

    Article  CAS  Google Scholar 

  49. M. B. Shiflett, A. M. S. Niehaus and A. Yokozeki,. J. Chem. Eng. Data, 55, 4785 (2010).

    Article  CAS  Google Scholar 

  50. K. Huang, X. M. Zhang, Y. Xu, Y. T. Wu, X. B. Hu and Y. Xu, AIChE J., 60, 4232 (2014).

    Article  CAS  Google Scholar 

  51. M. B. Shiflett and A. Yokozeki, Fluid Phase Equilib., 294, 105 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51776072 and NO. 52106009), the Fundamental Research Funds for the Central Universities (No. 2022MS108) and the Natural Science Foundation of Hebei Province (No. E2021502024 and No.E2020502044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemeng Wang.

Additional information

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhao, Y., Tian, X. et al. Selective absorption of H2S and CO2 from simulated coke oven gas by aqueous blends of N-methyldiethanolamine and tetramethylammonium glycine. Korean J. Chem. Eng. 39, 3039–3047 (2022). https://doi.org/10.1007/s11814-022-1204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1204-2

Keywords

Navigation