Skip to main content
Log in

Analysis of the extrusion pressure of a cylindrical extruder for extruding highly viscous fluids

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Extrusion pressure is crucial for the security and performance of a cylindrical extruder during the extrusion process. In this study, a validated CFD model was adopted to evaluate the relationship between the extrusion velocity, fluid viscosity, and the extrusion pressure of a cylindrical extruder while extruding highly viscous fluids. The simulated and experimental results of the extrusion pressure and velocity profiles show good agreement. This study reveals that extrusion pressure evolution can be divided into two stages during the extrusion process. At stage I, the distance between the ram and the bottom of the vessel (liquid height) is greater than the critical height and the extrusion pressure remains almost constant. At stage II, the distance is less than the critical height and the extrusion pressure increases exponentially. The results indicate that an increase in extrusion velocity and fluid viscosity leads to a linear increase in the extrusion pressure at stage I. Furthermore, by introducing a pressure number, Np, and a pressure-related Reynolds number, Rep, a novel correlation of the extrusion pressure with the extrusion velocity, viscosity of highly viscous fluids and liquid height has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

exponent [dimensionless]

d:

diameter of the die land [mm]

D:

diameter of the vessel [mm]

F:

external body forces other than pressure [N/m3]

\(\overset{\rightharpoonup}{{\rm{g}}}\) :

gravitational acceleration [m/s2]

H:

distance between ram and bottom of the vessel (liquid height) [mm]

Hc :

the critical height (mm)

KpI :

the extrusion pressure index at stage I [dimensionless]

KpII :

the extrusion pressure index at stage II [dimensionless]

L:

length of the die land [mm]

m:

exponent for velocity-dependent yield stress [dimensionless]

n:

exponent for velocity-dependent wall shear stress [dimensionless]

Np :

pressure number [dimensionless]

p:

the fluid pressure [Pa]

P ex :

extrusion pressure [Pa]

PexI :

extrusion pressure at stage I [Pa]

PexII :

extrusion pressure at stage II [Pa]

Rep :

pressure-related number [dimensionless]

t:

time [s]

\(\overset{\rightharpoonup}{{\rm{v}}}\) :

velocity vector [m/s]

vdie :

fluid velocity in die land [mm/s]

vram :

extrusion velocity [mm/s]

α :

velocity coefficient for yield stress [Pa/(m/s)m]

β :

wall slip shear rate coefficient [Pa/(m/s)n]

γ̇ :

volume-averaged shear rate of the fluid domain [1/s]

μ :

viscosity [Pa s]

ρ :

density [kg/m3]

σ 0 :

the yield stress [Pa]

τ :

volume-averaged shear stress of the fluid domain [Pa]

τ 0 :

wall slip yield stress [Pa]

CFD:

computational fluid dynamics

PIV:

Particle Image Velocity

References

  1. S. Naumann, U. Schweiggert-Weisz, A. Martin, M. Schuster and P. Eisner, Food Hydrocolloid., 111, 106222 (2021).

    Article  CAS  Google Scholar 

  2. N. Vitorino, M. J. Ribeiro, J. C. C. Abrantes, J. A. Labrincha and J. R. Frade, Ceram. Int., 40, 14543 (2014).

    Article  CAS  Google Scholar 

  3. T. O. Althaus and E. J. Windhab, Powder Technol., 211, 10 (2011).

    Article  CAS  Google Scholar 

  4. S. Mascia, M. J. Patel, S. L. Rough, P. J. Martin and D. I. Wilson, Eur. J. Pharm. Sci., 29, 22 (2006).

    Article  CAS  Google Scholar 

  5. K. Prabha, P. Ghosh, S. Abdullah, R. M. Joseph, R. Krishnan, S. S. Rana and R. C. Pradhan, Future Foods, 3, 100019 (2021).

    Article  CAS  Google Scholar 

  6. Y. S. Lee and O. O. Park, Korean J. Chem. Eng., 11, 1 (1994).

    Article  CAS  Google Scholar 

  7. R. A. Basterfield, C. J. Lawrence and M. J. Adams, Chem. Eng. Sci., 60, 2599 (2005).

    Article  CAS  Google Scholar 

  8. H. Khelifi, A. Perrot, T. Lecompte, D. Rangeard and G. Ausias, Powder Technol., 249, 258 (2013).

    Article  CAS  Google Scholar 

  9. M. Cortada-Garcia, W. H. Weheliye, V. Dore, L. Mazzei and P. Angeli, Chem. Eng. Sci., 179, 133 (2018).

    Article  CAS  Google Scholar 

  10. G. Yang, A. Terzis, I. Zarikos, S. M. Hassanizadeh, B. Weigand and R. Helmig, Chem. Eng. J., 370, 444 (2019).

    Article  CAS  Google Scholar 

  11. J. Jin and Y. Fan, Korean J. Chem. Eng., 37, 755 (2020).

    Article  Google Scholar 

  12. A. Silva, F. J. G. Silva, R. D. S. G. Campilho and P. M. P. F. Neves, J. Manuf. Processes, 65, 80 (2021).

    Article  Google Scholar 

  13. H. Zhang, X. Zhao, X. Deng, M. A. Sutton, A. P. Reynolds, S. R. McNeill and X. Ke, Int. J. Mech. Sci., 85, 130 (2014).

    Article  Google Scholar 

  14. M. P. Serdeczny, R. Comminal, M. T. Mollah, D. B. Pedersen and J. Spangenberg, Additive Manuf., 36, 101454 (2020).

    Article  CAS  Google Scholar 

  15. C. Soanuch, K. Korkerd, J. Phupanit, R. Piemjaiswang, P. Piumsomboon and B. Chalermsinsuwan, Korean J. Chem. Eng., 38, 540 (2021).

    Article  CAS  Google Scholar 

  16. P. Jay, A. Magnin and J. M. Piau, J. Fluids Eng., 124, 700 (2002).

    Article  Google Scholar 

  17. Q. Liu, N. Zhang, W. Wei, X. Hu, Y. Tan, Y. Yu, Y. Deng, C. Bi, L. Zhang and H. Zhang, J. Food Eng., 275, 109861 (2020).

    Article  CAS  Google Scholar 

  18. D. J. Ryan, M. J. H. Simmons and M. R. Baker, Chem. Eng. Sci., 163, 123 (2017).

    Article  CAS  Google Scholar 

  19. D. J. Horrobin and R. M. Nedderman, Chem. Eng. Sci., 53, 3215 (1998).

    Article  CAS  Google Scholar 

  20. T. Jiang, J.G. Munguia-Lopez, S. Flores-Torres, J. Kort-Mascort and J. M. Kinsella, Appl. Phys. Rev., 6, 11310 (2019).

    Article  Google Scholar 

  21. M. J. Ribeiro, S. Blackburn, J. M. Ferreira and J. A. Labrincha, J. Eur. Ceram. Soc., 26, 817 (2006).

    Article  CAS  Google Scholar 

  22. Y. Y. Li and J. Bridgwater, Powder Technol., 108, 65 (2000).

    Article  CAS  Google Scholar 

  23. Z. Lin, T. Jiang, J. M. Kinsella, J. Shang and Z. Luo, Mater. Lett., 303, 130480 (2021).

    Article  CAS  Google Scholar 

  24. J. J. Benbow, E. W. Oxley and J. Bridgwater, Chem. Eng. Sci., 42, 2151 (1987).

    Article  CAS  Google Scholar 

  25. C. Bhattacharjee, Korean J. Chem. Eng., 21, 556 (2004).

    Article  CAS  Google Scholar 

  26. K. Lachin, C. Turchiuli, V. Pistre, G. Cuvelier, S. Mezdour and F. Ducept, Chem. Eng. Res. Des., 163, 36 (2020).

    Article  CAS  Google Scholar 

  27. C. André, J. F. Demeyre, C. Gatumel, H. Berthiaux and G. Delaplace, Chem. Eng. J., 198–199, 371 (2012).

    Article  Google Scholar 

  28. M. Davarpanah, H. Shi, P. Nikrityuk and Z. Hashisho, Chem. Eng. Res. Des., 173, 289 (2021).

    Article  CAS  Google Scholar 

  29. S. L. Rough, D. I. Wilson and J. Bridgwater, Chem. Eng. Res. Des., 80, 701 (2002).

    Article  CAS  Google Scholar 

  30. K. E. Ryltseva, E. I. Borzenko and G. R. Shrager, J. Non-Newton. Fluid, 286, 104445 (2020).

    Article  CAS  Google Scholar 

  31. H. Bouras, Y. Haroun, R. Philippe, F. Augier and P. Fongarland, Chem. Eng. Sci., 233, 116378 (2021).

    Article  CAS  Google Scholar 

  32. R. K. Connelly and J. L. Kokini, J. Food Eng., 79, 956 (2007).

    Article  Google Scholar 

  33. E. Bumrungthaichaichan, Korean J. Chem. Eng., 33, 3050 (2016).

    Article  CAS  Google Scholar 

  34. H. Liu, J. Liu, M. C. Leu, R. Landers and T. Huang, Int. J. Adv. Manuf. Technol., 67, 899 (2013).

    Article  Google Scholar 

  35. Y. Sun, J. Yu, W. Wang, S. Yang, X. Hu and J. Feng, Korean J. Chem. Eng., 37, 743 (2020).

    Article  Google Scholar 

  36. F. Keramat, A. Mirvakili, A. Shariati and M. R. Rahimpour, Korean J. Chem. Eng., 38, 2020 (2021).

    Article  CAS  Google Scholar 

  37. S. I. Choi, J. P. Feng, H. S. Seo, Y. M. Jo and H. C. Lee, Korean J. Chem. Eng., 35, 2164 (2018).

    Article  CAS  Google Scholar 

  38. W. Han and X. Chen, Chem. Eng. Res. Des., 145, 213 (2019).

    Article  CAS  Google Scholar 

  39. S. Melzi, Comput. Graphics, 82, 117 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Shen, B., He, Y. et al. Analysis of the extrusion pressure of a cylindrical extruder for extruding highly viscous fluids. Korean J. Chem. Eng. 39, 2623–2635 (2022). https://doi.org/10.1007/s11814-022-1191-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1191-3

Keywords

Navigation