Skip to main content
Log in

Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work highlights a novel method for the synthesis of carbon nanosheets coated on zirconium oxide nanoplate (CNS/ZrO2NPs) nanocomposite that is used as an adsorbent for Zn2+ ions removal from water. CNS/ZrO2NPs nanocomposite was prepared using CNS and ZrO2NPs by a hydrothermal method. This nanocomposite proved to be a good adsorbent for Zn2+ ion uptake at maximum pH of 8 and dosage of 20 mg. The Temkin isotherm model represented the adsorption process followed by the Langmuir isotherm with a maximum adsorption capacity of 606.06 mg g−1, above other adsorbents that have been reported for the removal of zinc ions. The adsorption kinetic process was best described by the pseudo-second-order kinetics, and it was found that the adsorption followed a chemisorption process. The thermodynamic parameters, such as enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS), revealed that the adsorption was exothermic, spontaneous, and not random during the process. This metal-loaded adsorbent Zn2+-CNS/ZrO2NPs nanocomposite furthermore was reused in latent fingerprint detection and did demonstrate good selectivity and sensitivity on different surfaces by two donors. Therefore, Zn2+-CNS/ZrO2NPs nanocomposite may be reutilized as a good fingerprint marking agent in latent fingerprint (LFP) identification to circumvent secondary environmental pollution by the release of a spent adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Rejula and M. Dhinakaran, Res. J. Recent Sci., 1, 2 (2012).

    Google Scholar 

  2. D. Lakherwal, IJERD, 4, 1 (2014).

    Google Scholar 

  3. K. Trivunac, Z. Sekulić and S. Stevanović, J. Serb. Chem. Soc., 77, 1661 (2012).

    Article  CAS  Google Scholar 

  4. S. M. Kanawade and R. W. Gaikwad, Int. J. Chem. Eng. Appl., 2, 199 (2011).

    CAS  Google Scholar 

  5. V. Vaishnav, S. Chandra and K. Daga, Int. J. Sci. Eng. Res., 2, 12 (2011).

    Google Scholar 

  6. H. M. Zwain, M. Vakili and I. Dahlan, Int. J. Chem. Eng., 2014 (2014).

  7. Z. Tevassolirizi, K. Shams and M. R. Omidkhah, J. Ind. Eng. Chem., 23 (2015).

  8. S. Indah, D. Helard and A. Sasmita, Water Sci. Technol., 73, 12 (2016).

    Article  Google Scholar 

  9. S. Dixit and J. G. Hering, Environ. Sci. Technol., 37, 4182 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. A. K Patra, A. Dutta and A. Bhaumik, J. Hazard. Mater., 201–202, 170 (2012).

    Article  PubMed  Google Scholar 

  11. Z. Xu, Q. Li, S. Gao and J. K. Shang, Water Res., 44, 5713 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. B. J. Lafferty, M. Ginder-Vogel and D. L. Sparks, Environ. Sci. Technol., 44, 8460 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. C. Hang, Q. Li, S. Gao and J. K. Shang, Ind. Eng. Chem. Res., 51, 353 (2012).

    Article  CAS  Google Scholar 

  14. A. R. Contreras, E. Casals, V. Puntes, D. Komilis, A. Sánchez and X. Font, Glob. Nest J., 17, 536 (2015).

    Article  CAS  Google Scholar 

  15. S. Mahdavi, M. Jalali and A. Afkhami, in Nanotechnol. Sustain. Dev. (2012).

  16. R. Taman, O. Me and F. Ha, J. Adv. Chem. Eng., 5, 3 (2015).

    Google Scholar 

  17. D. L. Trejo-Arroyo, K E. Acosta, J. C. Cruz, A. M. Valenzuela-Muñiz, R. E. Vega-Azamar and L. F. Jiménez, Appl. Sci., 9, 1 (2019).

    Article  Google Scholar 

  18. C. V Reddy, B. Babu, I. N. Reddy and J. Shim, Ceram. Int., 44, 6940 (2018).

    Article  CAS  Google Scholar 

  19. M. Negahdary, A. Habibi-Tamijani, A. Asadi and S. Ayati, J. Chem., 2013 (2012).

  20. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li and X. Huang, Nanomaterials, 9, 424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Ahmad, S. Ahmed and S. Ikram, Int. J. Pharmacogn., 2, 280 (2015).

    CAS  Google Scholar 

  22. S. M. Prabhu and S. Meenakshi, Carbohydr. Polym., 120, 60 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. E. Zong, D. Wei, H. Wan, S. Zheng, Z. Xu and D. Zhu, Chem. Eng. J., 221, 193 (2013).

    Article  CAS  Google Scholar 

  24. T. A. Dontsova, S. V. Nahirniak and I. M. Astrelin, J. Nanomater., 2019 (2019).

  25. L. J. Johnston, N. Gonzalez-Rojano, K. J. Wilkinson and B. Xing, NanoImpact, 18, 100219 (2020).

    Article  Google Scholar 

  26. B. G. Fouda-Mbanga, E. Prabakaran and K. Pillay, Arab. J. Chem., 13, 6762 (2020).

    Article  CAS  Google Scholar 

  27. C. Lennard, INTERPOL Forensic Science Symposium (2001).

  28. O. P. Jasuja and G. Singh, Forensic Sci. Int., 192, e11 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. A. Mukherjee, M. K. Adak, P. Dhak and D. Dhak, J. Environ. Sci. (China), 88, 301 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. M. Wang, M. Li, A. Yu, Y. Zhu, M. Yang and C. Mao, Adv. Funct. Mater., 27, 14 (2017).

    Google Scholar 

  31. W S. B. Dwandaru, A. L. Fadli, E. K. Sari and Isnaeni, Dig. J. Nanomater. Biostructures, 15, 555 (2020).

    Article  Google Scholar 

  32. M. J. Deka, P. Dutta, S. Sarma, O. K. Medhi, N. C. Talukdar and D. Chowdhury, Heliyon, 5, e01985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. S. Vivekanandhan, M. Venkateswarlu, H. R. Rawls and N. Satyanarayana, Mater. Chem. Phys., 120, 148 (2010).

    Article  CAS  Google Scholar 

  34. T. N. Rao, I. Hussain, J. E. Lee, A. Kumar and B. H. Koo, Appl. Sci., 9, 17 (2019).

    Article  Google Scholar 

  35. L. A. Chunduri, A. Kurdekar, S. Patnaik, B. V. Dev, T. M. Rattan and V. Kamisetti, Mater. Focus., 5, 1 (2016).

    Article  Google Scholar 

  36. E. De La Rosa-Cruz, L. A. Díaz-Torres, P. Salas, V M. Castaño and J. M. Hernández, J. Phys. D. Appl. Phys., 34, 2 (2001).

    Google Scholar 

  37. F. H. Alhassan, U. Rashid and Y. H. Taufiq-Yap, J. Oleo Sci., 64, 505 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. X. Yin, X. Xie, L. Song, Y. Zhou, P. Du and J. Xiong, J. Mater. Sci., 52, 11025 (2017).

    Article  CAS  Google Scholar 

  39. L. Sygellou, V. Gianneta, N. Xanthopoulos, D. Skarlatos, S. Georga, C. Krontiras, S. Ladas and S. Kennou, Surf. Sci. Spectra, 18, 58 (2011).

    Article  CAS  Google Scholar 

  40. H. Estrade-Szwarckopf, Carbon N. Y., 42, 1713 (2004).

    Article  CAS  Google Scholar 

  41. H. Zhou, F. Z. Zhou, Y. Q. Shen, B. Liao, J. J. Yu and X. Zhang, Chinese Phys. Lett., 35, 066202 (2018).

    Article  Google Scholar 

  42. Y. Liu and X. Jing, Carbon N. Y., 45, 1965 (2007).

    Article  CAS  Google Scholar 

  43. S. R. Teeparthi, E. W. Awin and R. Kumar, Sci. Rep., 8, 1 (2018).

    Article  CAS  Google Scholar 

  44. P. Lackner, Z. Zou, S. Mayr, U. Diebold and M. Schmid, Phys. Chem. Chem. Phys., 21, 17613 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. S. A. Bhalerao, A. S. Sharma and S. D. Maind, Int. J. Adv. Res. Biol. Sci., 2, 136 (2015).

    CAS  Google Scholar 

  46. H. Keramati, M. H. Saidi and M. Zabetian, J. Dispers. Sci. Technol., 37, 6 (2016).

    Article  CAS  Google Scholar 

  47. F. E. Bortot Coelho, V. M. Candelario, E. M. R. Araújo, T. L. S. Miranda and G. Magnacca, Nanomaterials, 10, 779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. S. A. Chaudhry, T. A. Khan and I. Ali, Egypt. J. Basic Appl. Sci., 3, 287 (2016).

    Google Scholar 

  49. M. Karnib, A. Kabbani, H. Holail and Z. Olama, Energy Procedia., 50 (2014).

  50. S. Debnath, A. Maity and K. Pillay, J. Environ. Chem. Eng., 2, 260 (2014).

    Article  CAS  Google Scholar 

  51. R. Asadi, H. Abdollahi, M. Gharabaghi and Z. Boroumand, Adv. Powder Technol., 31, 1480 (2020).

    Article  CAS  Google Scholar 

  52. M. S. Mansour, M. E. Ossman and H. A. Farag, Desalination, 272, 301 (2011).

    Article  CAS  Google Scholar 

  53. T. Wang, P. Zhang, D. Wu, M. Sun, Y. Deng and R. L. Frost, J. Colloid Interface Sci., 443, 65 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. M. E. Mahmoud, E. A. Saad, A. M. El-Khatib, M. A. Soliman and E. A. Allam, Prog. Nucl. Energy, 106, 51 (2018).

    Article  CAS  Google Scholar 

  55. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin and Y. Qi, Appl. Surf. Sci., 279, 432 (2013).

    Article  CAS  Google Scholar 

  56. M. H. Al-Malack and A. A. Basaleh, Desalin. Water Treat., 57, 24519 (2016).

    Article  CAS  Google Scholar 

  57. A. Roy and J. Bhattacharya, Chem. Eng. J., 211–212, 493 (2012).

    Article  Google Scholar 

  58. J. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z. Zhao and F. Cui, Chem. Eng. J., 304, 737 (2016).

    Article  CAS  Google Scholar 

  59. L. Liu, Y. Luo, W. Tan, F. Liu, S.L. Suib, Y. Zhang and G. Qiu, Environ. Sci. Nano, 4, 811 (2017).

    Article  CAS  Google Scholar 

  60. T. Velempini, K. Pillay, X. Y. Mbianda and O. A. Arotiba, J. Environ. Sci. (China), 79, 280 (2019).

    Article  PubMed  Google Scholar 

  61. M. Chigondo, H. Kamdem Paumo, M. Bhaumik, K. Pillay and A. Maity, J. Colloid Interface Sci., 532, 500 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. E. C. Umejuru, E. Prabakaran and K. Pillay, Results Mater., 7, 100117 (2020).

    Article  Google Scholar 

  63. A. A. Jalil, S. Triwahyono, M. R. Yaakob, Z. Z. A. Azmi, N. Sapawe, N. H. N. Kamarudin, H. D. Setiabudi, N. F. Jaafar, S. M. Sidik, S. H. Adam and B. H. Hameed, Bioresour. Technol., 120, 218 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. T. Velempini, K. Pillay, X. Y. Mbianda and O. A. Arotiba, J. Environ. Sci. (China), 79, 280 (2019).

    Article  PubMed  Google Scholar 

  65. K. Parashar, N. Ballav, S. Debnath, K. Pillay and A. Maity, J. Colloid Interface Sci., 476, 103 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. M. Hassan, L. Begun, S. Hosain, P. Poddar, A. Chowdhury and F. Ali, J. Environ. Anal. Toxicol., 7, 433 (2017).

    Google Scholar 

  67. J. Wang and C. Chen, Biotechnol. Adv., 27, 195 (2009).

    Article  PubMed  Google Scholar 

  68. Y. Bulut and Z. Tez, J. Environ. Sci., 19, 160 (2007).

    Article  CAS  Google Scholar 

  69. E. Prabakaran and K. Pillay, J. Saudi Chem. Soc., 24, 584 (2020).

    Article  CAS  Google Scholar 

  70. E. Prabakaran and K. Pillay, Arab. J. Chem., 13, 3817 (2020).

    Article  CAS  Google Scholar 

  71. L. Ma, Z. Xia, V. Atuchin, M. Molokeev, S. Auluck, A. H. Reshak and Q. Liu, Phys. Chem. Chem. Phys., 17, 31188 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. F. Li, H. Li and T. Cui, Opt. Mater. (Amst), 73, 459 (2017).

    Article  CAS  Google Scholar 

  73. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca and S. Y. Xie, J. Am. Chem. Soc., 128, 7756 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. F. Li, X. Wang, W. Liu, L. Wang and G. Wang, Opt. Mater. (Amst), 86, 79 (2018).

    Article  CAS  Google Scholar 

  75. R. Rajan, Y. Zakaria, S. Shamsuddin and N. F. Nik Hassan, Egypt. J. Forensic Sci., 9, 1 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The Chemical Sciences department, University of Johannesburg, South Africa, financially supported this work. The work was also supported by the NRF (National Research Foundation). A sincere thanks are extended to Profs Emanuela Carleschi and Bryan Doyle for conducting the XPS analysis.

Author information

Authors and Affiliations

Authors

Contributions

Bienvenu Gael Fouda Mbanga for conceptualization, data procuration, Eswaran Prabakaran for visualization, Kriveshini Pillay for guidance and supervision have equally contributed.

Corresponding author

Correspondence to Kriveshini Pillay.

Additional information

Declaration

The authors declare no competing financial interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2022_1187_MOESM1_ESM.pdf

Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda-Mbanga, B.G., Prabakaran, E. & Pillay, K. Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection. Korean J. Chem. Eng. 40, 824–840 (2023). https://doi.org/10.1007/s11814-022-1187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1187-z

Keywords

Navigation