Skip to main content

Advertisement

Log in

Investigating the effect of different nanoparticles on thermo-economic optimization of gasket plate heat exchanger

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper reports an investigation into the effects of different nanoparticles, including copper oxide, zirconium oxide, aluminum oxide, and silicon oxide nanoparticles, on thermoeconomic optimization of the gasket plate heat exchanger (GPHE). Effectiveness and total annual cost (TAC) were selected as two objective functions simultaneously. The non-dominated sorting genetic algorithm (NSGA-II) with seven design variables involving particle volumetric concentration and geometrical parameters of the GPHE was used for optimization. Results showed that TAC versus effectiveness was improved when nanoparticles were applied. The results of the optimization show that heat exchanger thermoeconomic parameters are better improved in the case of copper oxide as nanoparticles and generally followed by zirconium oxide, aluminiom oxide, silicon oxide. For example, 2.61% growth in the effectiveness and 6.8% reduction in the TAC are observed in the case of copper oxide nanoparticles compared with the case of without nanoparticles. The effectiveness and TAC decreased with an increase in the corrugation wavelength, while an enhancing in the plate length of the GPHE leads to an increase in effectiveness and TAC. Also, the results indicate that with an enhancement of the particle volumetric concentration of nanoparticles, effectiveness and TAC were increased linearly. Finally, the effect of the price of different nanoparticles on TAC was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The data will be made available on request

Abbreviations

Atot :

total heat transfer surface area [m2]

af :

annualized factor [-]

a:

chevron corrugation amplitude [mm]

cp :

specific heat [J/kg·K]

C min :

minimum of Ch and Cc [W/K]

C max :

maximum of Ch and Cc [W/K]

C inv :

investment cost [$]

C np :

cost of nanoparticles supply [$]

Cop :

operational cost [$/year]

Dhyd :

hydraulic diameter [m]

f:

fanning friction factor [-]

G:

mass flux [kg/m2·s]

h:

heat transfer coefficient [W/m2 K]

i:

interest rate [-]

K:

thermal conductivity [Wm−1K−1]

kel :

unit price of electricity [$/kWh]

Lp :

plate length [m]

ṁ:

mass flow rate [kg/s]

N:

number of chevron plates [-]

Nu:

Nusselt number [-]

NTU:

number of transfer units [-]

PVC:

particle volumetric concentration [-]

Pr:

Prandtl number [-]

Re:

Reynolds number [-]

Rf :

fouling resistance [K·m2/W])

T:

temperature [K]

U:

overall heat transfer coefficient [W/m2 K]

Vt :

volumetric flow rate [m3/s]

W:

plate width [m]

y:

depreciation time [year]

ZNP :

unit price of nanoparticles [$/kg]

μ :

viscosity [kgm−1s−1]

Φ :

particle volumetric concentration [-]

η p :

pump effectiveness [-]

ρ :

density [kg/m3]

ε :

effectiveness [-]

Λ :

chevron corrugation angle [mm]

β :

corrugation angle [deg]

τ :

hours of operation per year

bf:

base fluid

c:

cold side

h:

hot side

m:

medium

nf:

nanofluid

np:

nanoparticles

tot:

total

w:

wall

References

  1. R. K. Shah and D. P. Sekulic, Fundamentals of heat exchanger design, John Wiley & Sons (2003).

  2. W. M. Kays and A. L. London, Compact heat exchangers, McGraw-Hill Book Company, Inc., New York, N. Y (1958).

    Google Scholar 

  3. M. Imran, N. A. Pambudi and M. Farooq, Case Stud. Therm. Eng., 10, 570 (2017).

    Article  Google Scholar 

  4. C. Gulenoglu, F. Akturk, S. Aradag, N. S. Uzol and S. Kakac, Int. J. Therm. Sci., 75, 249 (2014).

    Article  Google Scholar 

  5. A. Yildiz and M. A. Ersöz, Renew. Sustain. Energy Rev., 42, 240 (2015).

    Article  Google Scholar 

  6. H. Shokouhmand and M. Hasanpour, Case Stud. Therm. Eng., 18, 100570 (2020).

    Article  Google Scholar 

  7. H. I. Mohammed, D. Giddings, G. S. Walker, P. Talebizadehsardari and J. M. Mahdi, Int. Commun. Heat Mass Transfer, 117, 104773 (2020).

    Article  CAS  Google Scholar 

  8. Y. Ju, T. Zhu, R. Mashayekhi, H. I. Mohammed, A. Khan, P. Talebizadehsardari and W. Yaïci, J. Nanomater., 11(6), 1570 (2021).

    Article  CAS  Google Scholar 

  9. A. K. Gholap and J. A. Khan, Appl. Energy, 84(12), 1226 (2007).

    Article  CAS  Google Scholar 

  10. H. I. Mohammed, D. Giddings and G. S. Walker, Int. J. Heat Mass Transfer, 125, 218 (2018).

    Article  CAS  Google Scholar 

  11. H. I. Mohammed and D. Giddings, Int. J. Therm. Sci., 146, 106099 (2019).

    Article  CAS  Google Scholar 

  12. F. Hajabdollahi, Z. Hajabdollahi and H. Hajabdollahi, Heat Transfer Res., 44(8) (2013).

  13. H. I. Mohammed, D. Giddings and G. S. Walker, Int. J. Heat Mass Transfer, 130, 710 (2019).

    Article  CAS  Google Scholar 

  14. R. S. Vajjha and D. K. Das, Int. J. Heat Mass Transfer, 52(21–22), 4675 (2009).

    Article  CAS  Google Scholar 

  15. R. S. Vajjha and D. K. Das, Int. J. Heat Mass Transfer, 55(15–16), 4063 (2012).

    Article  CAS  Google Scholar 

  16. K. V. Sharma, P. K. Sarm, W. H. Azmi, R. Mamat and K. Kadirgama, Int. J. Microscale and Nanoscale Therm. Fluid Transp. Phenom, 3(4), 1 (2012).

    CAS  Google Scholar 

  17. R. Lotfi, Y. Saboohi and A. M. Rashidi, Int. Commun. Heat Mass Transfer, 37(1), 74 (2010).

    Article  CAS  Google Scholar 

  18. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret and F. Bazantay, Exp. Therm Fluid Sci., 35(8), 1535 (2011).

    Article  Google Scholar 

  19. Z. Guo, J. Enhanced Heat Transfer, 27(1) (2020).

  20. A. K. Tiwari, P. Ghosh and J. Sarkar, Exp. Therm Fluid Sci., 49, 141 (2013).

    Article  CAS  Google Scholar 

  21. M. N. Pantzali, A. A. Mouza and S. V. Paras, Chem. Eng. Sci., 64(14), 3290 (2009).

    Article  CAS  Google Scholar 

  22. V. Kumar, A. K. Tiwari and S. K. Ghosh, Energy Convers. Manage., 118, 142 (2016).

    Article  CAS  Google Scholar 

  23. Z. Taghizadeh-Tabari, S. Z. Heris, M. Moradi and M. Kahani, Renew. Sustain. Energy Rev., 58, 1318 (2016).

    Article  CAS  Google Scholar 

  24. D. Huang, Z. Wu and B. Sunden, Int. J. Heat Mass Transfer, 89, 620 (2015).

    Article  CAS  Google Scholar 

  25. H. Hajabdollahi, M. Ataeizadeh, B. Masoumpour and M. S. Dehaj, Heat Transfer Res., 52(3) (2021).

  26. H. Hajabdollahi, B. Masoumpour and M. Ataeizadeh, Heat Transfer, 50(1), 56 (2021).

    Article  Google Scholar 

  27. M. S. Dehaj and H. Hajabdollahi, Int. J. Env. Sci. Technol., 19(3), 1407 (2022).

    Article  Google Scholar 

  28. S. Kakac, H. Liu and A. Pramuanjaroenkij, HEs: selection, rating, and thermal design, CRC press (2012).

  29. J. Branke, J. Branke, K. Deb, K. Miettinen and R. Slowiński, Lect. Notes Comput. Sci., 5252 (2008).

  30. H. Hajabdollahi, Appl. Therm. Eng., 82, 152 (2015).

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

H. Hajabdollahi suggested the idea and stated the theory; M. Ataeizadeh performed optimization; M. Shafiey wrote the manuscript with support from H. Hajabdollahi; all authors discussed the results and contributed to the final manuscript; Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Hajabdollahi.

Ethics declarations

Conflicts of Interest/Competing Interests The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Financial Interests

The authors have no relevant financial or non-financial interests to disclose.

Code Availability

The Code will be made available on request

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehaj, M.S., Hajabdollahi, H. & Ataeizadeh, M. Investigating the effect of different nanoparticles on thermo-economic optimization of gasket plate heat exchanger. Korean J. Chem. Eng. 39, 2636–2651 (2022). https://doi.org/10.1007/s11814-022-1178-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1178-0

Keywords

Navigation