Skip to main content
Log in

Comparative study of naproxen degradation via integrated UV/O3/PMS process: Degradation products, reaction pathways, and toxicity assessment

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present study comprehensively investigated the degradation of naproxen (NPX) using UV/O3/peroxymonosulfate (PMS), UV/O3, UV/PMS, and O3/PMS processes. The effects of various parameters such as PMS and ozone dosage, pH, and NPX concentration were investigated on process performance. Scavenging tests were conducted to identify the dominant radical species. The results under the optimal conditions show that the UV/O3/PMS process is highly efficient for NPX degradation within 30 min of reaction time. Synergy index was also calculated and it was found that ozonation of the UV/PMS process leads to higher removal efficiency and a synergy effect of about 25% was calculated. It was also found that after complete destruction of NPX molecules, 76.9% of TOC was also removed. The final degradation by-products was tracked and it was proved that hydroxylation and decarboxylation were the main pathways in NPX degradation in the UV/O3/PMS reactor. It was also proved that OH was the main oxidizing agent in the UV/O3/PMS and accordingly the degradation mechanism of NPX was suggested. Cytotoxicity assessment of the process effluent indicated a noticeable reduction in the toxicity of the NPX-laden solution after treatment using UV/O3/PMS process. Furthermore, cost analysis of the different oxidation processes for real wastewater indicated that UV/O3/PMS is the most cost-effective process compared to that of other processes (112 US$/m3). Accordingly, it can be put forth that the UV/O3/PMS process is a promising and reliable process for the degradation of naproxen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.-M. A. Lucero, G.-M. Marcela, G.-M. Sandra, G.-O. L. Manuel and R.-E. Celene, Water Air Soil Poll., 226(6), 1 (2015).

    Article  CAS  Google Scholar 

  2. S. Dong, X. Zhai, R. Pi, J. Wei, Y. Wang and X. Sun, Water Sci. Technol., 81(10), 2078 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. L. Xu, X. Ma, J. Niu, J. Chen and C. Zhou, J. Hazard. Mater., 379, 120692 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Yang, J. J. Pignatello, J. Ma and W. A. Mitch, Water Res., 89, 192 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. F. Rehman, M. Sayed, J. A. Khan, N. S. Shah, H. M. Khan and D. D. Dionysiou, J. Hazard. Mater., 357, 506 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. H. Zangeneh, A. Zinatizadeh and M. Feizy, J. Ind. Eng. Chem., 20(4), 1453 (2014).

    Article  CAS  Google Scholar 

  7. J. Wang and S. Wang, Chem. Eng. J., 334, 1502 (2018).

    Article  CAS  Google Scholar 

  8. F. Jiang, B. Qiu and D. Sun, Chem. Eng. J., 349, 338 (2018).

    Article  CAS  Google Scholar 

  9. X. Zhang, Z. Chen, J. Kang, S. Zhao, B. Wang, P. Yan, F. Deng, J. Shen and W. Chu, J. Hazard. Mater., 401, 123837 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Shao, Z. Pang, L. Wang and X. Liu, Molecules, 24(16), 2874 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  11. Y. Mao, H. Dong, S. Liu, L. Zhang and Z. Qiang, Water Res., 173, 115615 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. M. Khashij, M. Mehralian and Z. G. Chegini, Pig. Resin Technol., 49(5), 363 (2020).

    Article  CAS  Google Scholar 

  13. Z. Yuan, M. Sui, B. Yuan, P. Li, J. Wang, J. Qin and G. J. E. S. W. R. Xu, Environ. Sci-Wat. Res. Technol., 3(5), 960 (2017).

    CAS  Google Scholar 

  14. Y. Cao, W. Qiu, Y. Zhao, J. Li, J. Jiang, Y. Yang, S.-Y. Pang and G. Liu, Chem. Eng. J., 401, 126 (2020).

    Google Scholar 

  15. Z. Lin, W. Qin, L. Sun, X. Yuan and D. Xia, J. Water Process Eng., 38, 101636 (2020).

    Article  Google Scholar 

  16. Z. Liu, K. Demeestere and S. Van Hulle, J. Environ. Chem. Eng., 9(4), 105599 (2021).

    Article  CAS  Google Scholar 

  17. APHA, Federation, W. E., & APH Association. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA (2005).

    Google Scholar 

  18. G. Moussavi, M. Pourakbar, S. Shekoohiyan and M. Satari, Chem. Eng. J., 331, 755 (2018).

    Article  CAS  Google Scholar 

  19. Y. Ling, G. Liao, Y. Xie, J. Yin, J. Huang, W. Feng and L. Li, J. Photoch. Photobio. A, 329, 280 (2016).

    Article  CAS  Google Scholar 

  20. E. M. Cuerda-Correa, M. F. Alexandre-Franco and C. Fernández-González, Water, 12(1), 102 (2020).

    Article  CAS  Google Scholar 

  21. W. Qin, Z. Lin, H. Dong, X. Yuan, Z. Qiang, S. Liu and D. Xia, Water Res., 186, 116336 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. S. Srithep and S. Phattarapattamawong, Chemosphere, 176, 25 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. X. He, S. P. Mezyk, I. Michael, D. Fatta-Kassinos and D. D. Dionysiou, J. Hazard. Mater., 279, 375 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Y.-H. Huang, Y.-F. Huang, C.-i. Huang and C.-Y. Chen, J. Hazard. Mater., 170(2), 1110 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. E. Hayon, A. Treinin and J. Wilf, J. Am. Chem. Soc., 94(1), 47 (1972).

    Article  CAS  Google Scholar 

  26. W.-D. Oh, Z. Dong and T.-T. Lim, Appl. Catal. B-Environ., 194, 169 (2016).

    Article  CAS  Google Scholar 

  27. X. Liu, T. Zhang, Y. Zhou, L. Fang and Y. Shao, Chemosphere, 93(11), 2717 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. M. Izadifard, G. Achari and C. H. Langford, Water Res., 125, 325 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. G. Moussavi, M. Pourakbar, E. Aghayani and M. Mahdavianpour, Chem. Eng. J., 350, 673 (2018).

    Article  CAS  Google Scholar 

  30. L. Guo, Q. Zhong, J. Ding, M. Ou, Z. Lv and F. Song, Ozone-Sci. Eng., 38(5), 382 (2016).

    Article  CAS  Google Scholar 

  31. A. Behnami, J.-P. Croué, E. Aghayani and M. Pourakbar, RSC Adv., 11(58), 36965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Xu, Y. Wu, W. Zhang, X. Fan, Y. Wang and H. Zhang, Chem. Eng. J., 353, 626 (2018).

    Article  CAS  Google Scholar 

  33. J. Deng, Y. Ge, C. Tan, H. Wang, Q. Li, S. Zhou and K. Zhang, Chem. Eng. J., 330, 1390 (2017).

    Article  CAS  Google Scholar 

  34. I. H. Chowdhury, A. H. Chowdhury, P. Bose, S. Mandal and M. K. Naskar, RSC Adv., 6(8), 6038 (2016).

    Article  CAS  Google Scholar 

  35. J. Lim and M. R. Hoffmann, Environ. Sci-Nano, 7(5), 1602 (2020).

    Article  CAS  Google Scholar 

  36. D. L. Ball and J. O. Edwards, J. Phys. Chem., 62(3), 343 (1958).

    Article  CAS  Google Scholar 

  37. L. Clarizia, D. Russo, I. Di Somma, R. Marotta and R. Andreozzi, Appl. Catal. B-Environ., 209, 358 (2017).

    Article  CAS  Google Scholar 

  38. G. Moussavi, M. Rezaei and M. Pourakbar, Chem. Eng. J., 332, 140 (2018).

    Article  CAS  Google Scholar 

  39. G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour and S. Shekoohyian, Chem. Eng. J., 294, 273 (2016).

    Article  CAS  Google Scholar 

  40. Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.-Y. Pang, J. Li, X.-T. Lu and L.-P. Yuan, Environ. Sci. Technol., 49(21), 12941 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Y. Kanigaridou, A. Petala, Z. Frontistis, M. Antonopoulou, M. Solakidou, I. Konstantinou, Y. Deligiannakis, D. Mantzavinos and D. I. Kondarides, Chem. Eng. J., 318, 39 (2017)

    Article  CAS  Google Scholar 

  42. X. Gao, Q. Guo, G. Tang, W. Peng, Y. Luo and D. He, J. Water Reuse Desal., 9(3), 301 (2019).

    Article  CAS  Google Scholar 

  43. C. V. Rekhate and J. K. Srivastava, Chem. Eng. J. Adv., 3, 100031 (2020).

    Article  CAS  Google Scholar 

  44. M.-S. Chou and K.-L. Chang, Ozone-Sci. Eng., 29(5), 391 (2007).

    Article  CAS  Google Scholar 

  45. J. Sharma, I. M. Mishra, D. D. Dionysiou and V. Kumar, Chem. Eng. J., 276, 193 (2015)

    Article  CAS  Google Scholar 

  46. M. Scott, G. J. Millar and A. Altaee, J. Water Process Eng., 31, 100806 (2019).

    Article  Google Scholar 

  47. G. Liu, X. Li, B. Han, L. Chen, L. Zhu and L. C. Campos, J. Hazard. Mater., 322, 461 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. F. Méndez-Arriaga, J. Giménez and S. Esplugás, J. Adv. Oxid. Technol., 11(3), 435 (2008).

    Google Scholar 

  49. D. Kanakaraju, C. A. Motti, B. D. Glass and M. Oelgemöller, Chemosphere, 139, 579 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. C.-J. M. Chin, T.-Y. Chen, M. Lee, C.-F. Chang, Y.-T. Liu and Y.-T. Kuo, J. Hazard. Mater., 277, 110 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge funding from the Abadan University of Medical Science with project No. 98U597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Aghayani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourakbar, M., Ghanbari, F., Khavar, A.H.C. et al. Comparative study of naproxen degradation via integrated UV/O3/PMS process: Degradation products, reaction pathways, and toxicity assessment. Korean J. Chem. Eng. 39, 2725–2735 (2022). https://doi.org/10.1007/s11814-022-1172-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1172-6

Keywords

Navigation