Skip to main content
Log in

Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We examined the optimized conditions for preparing Pt/FTO glass counter electrodes (CEs) for the fabrication of highly efficient, bifacial, and quasi-solid-state dye-sensitized solar cells (QSS-DSSCs). The Pt/FTO glass CEs were prepared via thermal decomposition, and the molar concentration of the employed Pt precursor solution was controlled in the range of 5–40 mM. Impedance analysis and Tafel polarization curves revealed that electrocatalytic activity was optimized at 20 mM, whereas specular transmittance gradually decreased with increasing concentration of the precursor solution. When the CEs were applied to bifacial QSS-DSSCs employing a polymer gel electrolyte, the power conversion efficiency (PCE) was maximized at 20 mM under front illumination because the condition resulted in the highest electrocatalytic activity. Meanwhile, PCE under back illumination was optimized at 10 mM because of the larger incident light loss by the CEs at higher concentrations. Because the influence of the inferior performance under back illumination was more dominant in bifacial operations, the average PCE under front and back illumination was optimized at 10 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. K. Das, K. S. Tey, M. Seyedmahmoudian, S. Mekhilef, M. Y. I. Idris, W. Van Deventer, B. Horan and A. Stojcevski, Renew. Sust. Energ. Rev., 81, 912 (2018).

    Article  Google Scholar 

  2. Y. Cheng, S. Yang and C. Hsu, Chem. Rev., 109, 5868 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng and P. A. Johnson, Joule, 3, 1140 (2019).

    Article  CAS  Google Scholar 

  4. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen and L. Leenders, Thin Solid Films, 451, 22 (2004).

    Article  Google Scholar 

  5. B. O’regan and M. Grätzel, Nature, 353, 737 (1991).

    Article  Google Scholar 

  6. S. Hao, J. Wu, Y. Huang and J. Lin, Sol. Energy, 80, 209 (2006).

    Article  CAS  Google Scholar 

  7. L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, Energy Environ. Sci., 5, 6057 (2012).

    Article  CAS  Google Scholar 

  8. J. Yang, J. Kim, J. H. Yu, T. Ahn, H. Lee, T. Choi, Y. Kim, J. Joo, M. J. Ko and T. Hyeon, Phys. Chem. Chem. Phys., 15, 20517 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. W. Li, Z. Pan and X. Zhong, J. Mater. Chem. A, 3, 1649 (2015).

    Article  CAS  Google Scholar 

  10. J. Kim, J. Yang, J. H. Yu, W. Baek, C. Lee, H. J. Son, T. Hyeon and M. J. Ko, ACS Nano, 9, 11286 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. P. V. Kamat, J. Phys. Chem. C, 112, 18737 (2008).

    Article  CAS  Google Scholar 

  12. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen and Y. Yang, Science, 345, 295 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. W. Yin, T. Shi and Y. Yan, Appl. Phys. Lett., 104, 063903 (2014).

    Article  Google Scholar 

  14. M. Jošt, E. Könen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte and B. Rech, Energy Environ. Sci., 11, 3511 (2018).

    Article  Google Scholar 

  15. D. Kumar and K. Wong, Mater. Today Energy, 5, 243 (2017).

    Article  Google Scholar 

  16. G. Y. Margulis, M. G. Christoforo, D. Lam, Z. M. Beiley, A. R. Bowring, C. D. Bailie, A. Salleo and M. D. McGehee, Adv. Energy Mater., 3, 1657 (2013).

    Article  CAS  Google Scholar 

  17. H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata and F. Matsui, J. Photochem. Photobiol. A, 164, 67 (2004).

    Article  CAS  Google Scholar 

  18. K. Kawata, K. Tamaki and M. Kawaraya, JPST, 28, 415 (2015).

    CAS  Google Scholar 

  19. W. Naim, V. Novelli, I. Nikolinakos, N. Barbero, I. Dzeba, F. Grifoni, Y. Ren, T. Alnasser, A. Velardo and R. Borrelli, JACS Au., 1, 409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. Hwang, J. E. Nam, H. J. Jo and S. Sung, J. Power Sources, 361, 87 (2017).

    Article  CAS  Google Scholar 

  21. Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X. Zhao, ACS Nano., 5, 3795 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. S. Xu, Y. Luo, G. Liu, G. Qiao, W. Zhong, Z. Xiao, Y. Luo and H. Ou, Electrochim. Acta, 156, 20 (2015).

    Article  CAS  Google Scholar 

  23. A. Hübner, A. G. Aberle and R. Hezel, Appl. Phys. Lett., 70, 1008 (1997).

    Article  Google Scholar 

  24. S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang and M. Gratzel, Nat. Photonics, 2, 693 (2008).

    Article  CAS  Google Scholar 

  25. J. Wu, Z. Tang, Y. Huang, M. Huang, H. Yu and J. Lin, J. Power Sources, 257, 84 (2014).

    Article  CAS  Google Scholar 

  26. M. Y. Song, K. N. Chaudhari, J. Park, D. Yang, J. H. Kim, M. Kim, K. Lim, J. Ko and J. Yu, Appl. Energy, 100, 132 (2012).

    Article  CAS  Google Scholar 

  27. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 570, 257 (2004).

    Article  CAS  Google Scholar 

  28. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, J. Phys. Chem. B, 105, 12809 (2001).

    Article  CAS  Google Scholar 

  29. Z. Lan, J. Wu, J. Lin, M. Huang, S. Yin and T. Sato, Electrochim. Acta, 52, 6673 (2007).

    Article  CAS  Google Scholar 

  30. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc., 125, 475 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang and S. Yanagida, J. Am. Chem. Soc., 130, 1258 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, Nano Lett., 2, 1259 (2002).

    Article  CAS  Google Scholar 

  34. Y. Devrim and E. D. Arıca, Int. J. Hydrogen Energy, 44, 18951 (2019).

    Article  CAS  Google Scholar 

  35. X. Yang, J. Zheng, M. Zhen, X. Meng, F. Jiang, T. Wang, C. Shu, L. Jiang and C. Wang, Appl. Catal. B: Environ., 121, 57 (2012).

    Article  Google Scholar 

  36. O. Rosseler, C. Ulhaq-Bouillet, A. Bonnefont, S. Pronkin, E. Savinova, A. Louvet, V. Keller and N. Keller, Appl. Catal. B: Environ., 166, 381 (2015).

    Article  Google Scholar 

  37. X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv and W. Xing, Electrochim. Acta, 50, 3470 (2005).

    Article  CAS  Google Scholar 

  38. I. G. Casella and E. Desimoni, Electroanalysis, 8, 447 (1996).

    Article  CAS  Google Scholar 

  39. P. N. Kumar, A. Kolay, S. K. Kumar, P. Patra, A. Aphale, A. K. Srivastava and M. Deepa, ACS Appl. Mater. Interfaces, 8, 27688 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, ACS Nano, 4, 6203 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. J. Kim, K. J. Lee, S. H. Kang, J. Shin and Y. Sung, J. Phys. Chem. C, 115, 19979 (2011).

    Article  CAS  Google Scholar 

  42. H. Jaafar, M. F. Ain and Z. A. Ahmad, Opt. Quant. Electron., 52, 221 (2020).

    Article  CAS  Google Scholar 

  43. T.-Y. Hsieh, T.-C. Wei, P. Zhai, S.-P. Feng, M. Ikegami and T. Miyasaka, J. Power Sources, 283, 351 (2015).

    Article  CAS  Google Scholar 

  44. M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel and T. Ma, J. Am. Chem. Soc., 134, 3419 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Y.-C. Wang, D.-Y. Wang, Y.-T. Jiang, H.-A. Chen, C.-C. Chen, K.-C. Ho, H.-L. Chou and C.-W. Chen, Angew. Chem. Int. Ed., 52, 6694 (2013).

    Article  CAS  Google Scholar 

  46. Reference Solar Spectral Irradiance: Air Mass 1.5; American Society for Testing and Materials: West Conshohocken, PA, http://rredc.nrel.gov/solar/spectra/am1.5 (accessed November 23rd 2021).

  47. M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin and M. Grätzel, Nat. Chem., 2, 385 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1012014 and No. 2021M3I3A1085039). This work was also funded by the University Innovation Support Program for Dankook University in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Yup Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1170_MOESM1_ESM.pdf

Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, JW., Jung, SM., Kim, YJ. et al. Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte. Korean J. Chem. Eng. 39, 2817–2825 (2022). https://doi.org/10.1007/s11814-022-1170-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1170-8

Keywords

Navigation