Skip to main content
Log in

Facile microfluidic method for measuring the relaxation time of dilute polymer solution based on viscoelastic particle focusing

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The relaxation time of a viscoelastic fluid is an essential parameter for characterizing the degree of elasticity. However, measuring the relaxation time of dilute polymer solutions with low viscosity using conventional rotational rheometers remains challenging because of the low instrument sensitivity. In this study, we demonstrate an efficient microfluidic method for measuring the relaxation time of a dilute polymer solution by utilizing elasticity-driven lateral particle migration in a microchannel. First, the previous theoretical model was refined, based on the Oldroyd-B constitutive equation, in order to predict lateral particle migration in a viscoelastic fluid with constant shear viscosity, considering the inlet and finite particle size effects. This model was utilized to determine the relaxation times of dilute poly(ethylene oxide) (PEO) aqueous solutions. Direct comparison of the measured relaxation times with those obtained from Zimm theory verified the reliability of the proposed method. The current approach is expected to be useful in characterizing the relaxation times of a wide range of polymer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Wiley Interscience, New York (1987).

    Google Scholar 

  2. R. G. Larson, The structure and rheology of complex fluids, Oxford University Press, New York (1999).

    Google Scholar 

  3. K. Kang, S. S. Lee, K. Hyun, S. J. Lee and J. M. Kim, Nat. Commun., 4, 2567 (2013).

    Article  Google Scholar 

  4. J. Zilz, C. Schafer, C. Wagner, R. J. Poole, M. A. Alves and A. Lindner, Lab Chip, 14, 351 (2014).

    Article  CAS  Google Scholar 

  5. C. W. Macosko, Rheology: principles, measurements, and applications, Wiley-VCH (1994).

  6. L. E. Rodd, T. P. Scott, J. J. Cooper-White and G. H. McKinley, Appl. Rheol., 15, 12 (2004).

    Article  Google Scholar 

  7. F. Del Giudice, G. D’Avino, F. Greco, I. De Santo, P. A. Netti and P. L. Maffettone, Lab Chip, 15, 783 (2015).

    Article  CAS  Google Scholar 

  8. F. D. Giudice, S. J. Haward and A. Q. Shen, J. Rheol., 61, 327 (2017).

    Article  Google Scholar 

  9. C. Clasen, J. P. Plog, W.-M. Kulicke, M. Owens, C. Macosko, L. E. Scriven, M. Verani and G. H. McKinley, J. Rheol., 50, 849 (2006).

    Article  CAS  Google Scholar 

  10. J. M. Kim, Korean J. Chem. Eng., 32, 2406 (2015).

    Article  CAS  Google Scholar 

  11. D. Y. Kim and J. M. Kim, Korean J. Chem. Eng., 36, 837 (2019).

    Article  CAS  Google Scholar 

  12. A. Shiriny, M. Bayareh and A. A. Nadooshan, Korean J. Chem. Eng., 38, 1686 (2021).

    Article  CAS  Google Scholar 

  13. B. Kim, S. S. Lee, T. H. Yoo, S. Kim, S. Y. Kim, S.-H. Choi and J. M. Kim, Sci. Adv., 5, eaav4819 (2019).

    Article  Google Scholar 

  14. É. Guazzelli and J. F. Morris, A physical introduction to suspension dynamics, Cambridge University Press, Cambridge (2012).

    Google Scholar 

  15. B. P. Ho and L. G. Leal, J. Fluid Mech., 76, 783 (1976).

    Article  Google Scholar 

  16. A. Karnis, S. G. Mason and H. L. Goldsmith, Nature, 200, 159 (1963).

    Article  Google Scholar 

  17. A. M. Leshansky, A. Bransky, N. Korin and U. Dinnar, Phys. Rev. Lett., 98, 234501 (2007).

    Article  CAS  Google Scholar 

  18. G. D’Avino, G. Romeo, M. M. Villone, F. Greco, P. A. Netti and P. L. Maffettone, Lab Chip, 12, 1638 (2012).

    Article  Google Scholar 

  19. G. Romeo, G. D’Avino, F. Greco, P. A. Netti and P. L. Maffettone, Lab Chip, 13, 2802 (2013).

    Article  CAS  Google Scholar 

  20. G. D’Avino, F. Greco and P. L. Maffettone, Annu. Rev. Fluid Mech., 49, 341 (2017).

    Article  Google Scholar 

  21. D. F. James, Annu. Rev. Fluid Mech., 41, 129 (2009).

    Article  Google Scholar 

  22. W. W. Graessley, Polymer, 21, 258 (1980).

    Article  CAS  Google Scholar 

  23. V. Tirtaatmadja, G. H. McKinley and J. J. Cooper-White, Phys. Fluids, 18, 043101 (2006).

    Article  Google Scholar 

  24. M. Rubinstein and R. H. Colby, Polymer physics, Oxford University Press, Oxford (2003).

    Google Scholar 

  25. S. Yang, J. Y. Kim, S. J. Lee, S. S. Lee and J. M. Kim, Lab Chip, 11, 266 (2011).

    Article  CAS  Google Scholar 

  26. L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White and G. H. McKinley, J. Non-Newton. Fluid Mech., 129, 1 (2005).

    Article  CAS  Google Scholar 

  27. L. E. Rodd, J. J. Cooper-White, D. V. Boger and G. H. McKinley, J. Non-Newton. Fluid Mech., 143, 170 (2007).

    Article  CAS  Google Scholar 

  28. L. Casanellas, M. A. Alves, R. J. Poole, S. Lerouge and A. Lindner, Soft Matter, 12, 6167 (2016).

    Article  CAS  Google Scholar 

  29. Y. G. Liu, Y. G. Jun and V. Steinberg, J. Rheol., 53, 1069 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ajou University Research Fund, grant number [S-2019-G0001-00498].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Soup Shim or Ju Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, Y., Shim, T.S. & Kim, J.M. Facile microfluidic method for measuring the relaxation time of dilute polymer solution based on viscoelastic particle focusing. Korean J. Chem. Eng. 39, 2318–2323 (2022). https://doi.org/10.1007/s11814-022-1152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1152-x

Keywords

Navigation