Skip to main content
Log in

Degradation of sulphapyridine by Fe-Mn binary oxide-mediated radical reactions

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sewage containing antibiotics is harmful to the water environment. Here, a newly prepared iron manganese binary oxide (FMBO) activated persulfate (PDS) has excellent performance for the degradation of sulfapyridine (SPY) in an aqueous environment. The effects of initial pH, SPY, PDS concentration and FMBO dosage on the degradation ability of SPY were investigated. When the pH of FMBO/PDS was 4.0 and the initial concentration of PDS was 2.0 mmol/L, the degradation ratio of SPY could reach 94.4%. In the system of removing organic pollutants by transition metal activated PDS, SO −•4 and •OH radicals are generally generated, and •OH radical plays a major role. Through the identification of SPY intermediate products by LC/MS, the degradation mechanism was explored. The degradation pathway showed that the strong oxidation of FMBO and the activity of PDS promoted the production of hydroxyl radical and contributed to the degradation and transformation of antibiotics. This study shows that FMBO/PDS has high degradation efficiency in the degradation of SPY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Deng, S. F. Shao and K. J. Zhang, Chem. Eng. J., 308, 505 (2017).

    Article  CAS  Google Scholar 

  2. J. Deng, H. Wu and S. J. Wang, Environ. Technol., 40, 1585 (2019).

    Article  CAS  Google Scholar 

  3. S. Cai, Y. Liu and J. Chen, Environ. Chem. Lett., 18, 1693 (2020).

    Article  CAS  Google Scholar 

  4. R. Bhuvaneswari, V. Nagarajan and R. Chandiramouli, Phys. Lett. A, 394, 127198 (2021).

    Article  CAS  Google Scholar 

  5. F. H. Geng, T. T. Jia and S. W. Zhang, Water Purificat. Technol., 37, 89 (2018).

    Google Scholar 

  6. H. Chen and K. C. Carroll, Environ. Pollut., 215, 96 (2016).

    Article  CAS  Google Scholar 

  7. J. Cao, W.X. Zhang and D. G. Brown, Environ. Eng. Sci., 25, 221 (2008).

    Article  CAS  Google Scholar 

  8. A. Outsiou, Z. Frontistis and R. S. Ribeiro, Water Res., 124, 97 (2017).

    Article  CAS  Google Scholar 

  9. Y. Chen, P. Deng and P. Xie, Chemosphere, 168, 1628 (2017).

    Article  CAS  Google Scholar 

  10. Y. Feng, D.L. Wu and Y. Deng, Environ. Sci. Technol., 50, 3119 (2016).

    Article  CAS  Google Scholar 

  11. W. J. Sang, Z. X. Li and M. J. Huang, J. Environ. Sci., 39 (2019).

  12. K. Wu, X. Y. Si and J. Jiang, Environ. Sci. Pollut. R., 26, 14350 (2019).

    Article  CAS  Google Scholar 

  13. X. J. Liu, X. W. Zhang and Z. Z. Wu, Mod. Chem. Ind., 38, 92 (2018).

    Google Scholar 

  14. W. Zheng, X. Yang and J.F. Zhang, Environ. Sci. Technol., 30, 41 (2007).

    Google Scholar 

  15. B. Nikravesh, A. Shomalnasab and A. Nayyer, J. Environ. Chem. Eng., 8, 104244 (2020).

    Article  CAS  Google Scholar 

  16. C. Liang, C. F. Huang and Y. J. Chen, Water Res., 42, 4091 (2008).

    Article  CAS  Google Scholar 

  17. X. R. Xu and X. Z. Li, Sep. Purif. Technol., 72, 105 (2010).

    Article  CAS  Google Scholar 

  18. F. Ghanbari, Q. Wang and A. Hassani, Chemosphere, 279, 130610 (2021).

    Article  CAS  Google Scholar 

  19. S. Y. Oh and D. S. Shin, J. Chem. Technol. Biot., 88, 145 (2013).

    Article  CAS  Google Scholar 

  20. S. H. Zhang, D. J. Tan and Q. Y. Chen, J. Donghua Univ. Nat. Sci., 39, 814 (2013).

    CAS  Google Scholar 

  21. G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol., 38, 3705 (2004).

    Article  CAS  Google Scholar 

  22. G. D. Fang, D. D. Dionysiou and S. R. Al-Abed, Appl. Catal. B-Environ., 129, 325 (2013).

    Article  CAS  Google Scholar 

  23. T. K. Sesegma, T. D. Elvira and V. D. Darima, Appl. Clay Sci., 146, 92 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Platform construction project in Wuhu [grant number Kjcxpt202004] and the 2021 University-level scientific research project [grant number wzyzrzd202108].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youzhi Yao.

Ethics declarations

Conflict of interest The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Zhang, Z., Hua, F. et al. Degradation of sulphapyridine by Fe-Mn binary oxide-mediated radical reactions. Korean J. Chem. Eng. 39, 2685–2690 (2022). https://doi.org/10.1007/s11814-022-1139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1139-7

Keywords

Navigation