Skip to main content

Advertisement

Log in

One-step synthesis of Ni3N@C hybrid and its catalytic activity for overall water splitting

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ni3N@C nanocomposite was prepared by a simple one-step low-temperature pyrolysis method with nickel acetate in flowing ammonia. The spherical Ni3N nanoparticles were uniformly coated with a carbon protective layer formed in-situ with a thickness of 10 nm, which shows excellent catalytic activity for overall water splitting in alkaline solution. The experimental results showed that the initial potential for hydrogen evolution reaction (HER) was −0.06 V (versus reversible hydrogen electrode, vs RHE), and the overpotential (η) was 284 mV at the current density of 10 mA cm−2; the initial potential for oxygen evolution reaction (OER) was 1.53 V vs RHE, and η was 390 mV at the current density of 10 mA cm−2. In addition, Ni3N@C had excellent stability for overall water splitting in alkaline solution. The excellent activity and high stability of the catalyst are due to the high intrinsic activity of Ni3N as well as the formation of carbon coating layer, which not only improves the conductivity of the material and accelerates the transfer of electrons and protons, but also protects Ni3N from corrosion in alkaline electrolyte. In a word, we provide a simple, economical and low-temperature sustaining method to prepare Ni3N to be used in water splitting, and the preparation method can also be used to prepare other promising bifunctional electrocatalysts for energy conversion field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, Y. B. Li, P. F. Ji and J. Yang, Renew. Sust. Energ. Rev., 49, 805 (2015).

    Article  Google Scholar 

  2. A. Ursua, L. M. Gandia and P. Sanchis, IEEE, 100, 410 (2012).

    Article  CAS  Google Scholar 

  3. S. Anantharaj, S. Noda, V. R. Jothi, S. Yi, M. Driess and P. W. Menezes, Angew. Chem. Int. Ed., 60, 18981 (2021).

    Article  CAS  Google Scholar 

  4. N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu and H. M. Chen, Chem. Soc. Rev., 46, 337 (2017).

    Article  CAS  Google Scholar 

  5. C. Li and J. B. Baek, ACS Omega, 5, 31 (2020).

    Article  CAS  Google Scholar 

  6. W. Lu, J. Chen, J. Feng and J. Yu, Rare. Metal Mat. Eng., 41, 184 (2012).

    CAS  Google Scholar 

  7. R. Sun, W. Guo, X. Han and X. Hong, Chem. Res. Chin. U., 36, 597 (2020).

    Article  CAS  Google Scholar 

  8. L. Tian, Z. Li, M. Song and J. Li, Nanoscale, 13, 12088 (2021).

    Article  CAS  Google Scholar 

  9. S. H. Gage, B. G. Trewyn, C. V. Ciobanu, S. Pylypenko and R. M. Richards, Catal. Sci. Technol., 6, 4059 (2016).

    Article  CAS  Google Scholar 

  10. N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao and S. Liu, J. Mater. Chem. A, 6, 19912 (2018).

    Article  CAS  Google Scholar 

  11. M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger and M. Antonietti, J. Mater. Chem. A, 3, 8171 (2015).

    Article  CAS  Google Scholar 

  12. A. K. Tareen, G. S. Priyanga, K. Khan, E. Pervaiz, T. Thomas and M. Yang, ChemSusChem, 12, 3941 (2019).

    Article  CAS  Google Scholar 

  13. Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo and S. Wang, ACS Appl. Mater. Inter., 8, 18652 (2016).

    Article  CAS  Google Scholar 

  14. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat and H. J. Fan, Angew. Chem. Int. Ed., 55, 8670 (2016).

    Article  CAS  Google Scholar 

  15. R. Qin, P. Wang, C. Lin, F. Cao, J. Zhang, L. Chen and S. Mu, Acta Phys-Chim. Sin., 37, 2009099 (2021).

    Google Scholar 

  16. J. Zheng, W. Zhang, J. Zhang, M. Lv, S. Li, H. Song, Z. Cui, L. Du and S. Liao, J. Mater. Chem. A, 8, 20803 (2020).

    Article  CAS  Google Scholar 

  17. M. X. Chen, J. Qi, D. Y. Guo, H. T. Lei, W. Zhang and R. Cao, Chem. Commun., 53, 9566 (2017).

    Article  CAS  Google Scholar 

  18. B. Ouyang, Y. Q. Zhang, Z. Zhang, H. J. Fan and R. S. Rawat, Small, 13, 1604265 (2017).

    Article  Google Scholar 

  19. B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan, B. Huang, Y. Wu and X. Hao, ChemSusChem, 11, 3198 (2018).

    Article  CAS  Google Scholar 

  20. W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu and R. R. Adzic, Angew. Chem. Int. Ed., 51, 6131 (2012).

    Article  CAS  Google Scholar 

  21. Y. Gong, L. Wang, H. Xiong, M. Shao, L. Xu, A. Xie, S. Zhuang, Y. Tang, X. Yang, Y. Chen and P. Wan, J. Mater. Chem. A, 7, 13671 (2019).

    Article  CAS  Google Scholar 

  22. D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue and J. Ding, J. Mater. Chem. A, 4, 17363 (2016).

    Article  CAS  Google Scholar 

  23. M.-S. Balogun, Y. Zeng, W. Qiu, Y. Luo, A. Onasanya, T. K. Olaniyi and Y. Tong, J. Mater. Chem. A, 4, 9844 (2016).

    Article  CAS  Google Scholar 

  24. S. H. Gage, D. A. Ruddy, S. Pylypenko and R. M. Richards, Catal. Today, 306, 9 (2018).

    Article  CAS  Google Scholar 

  25. M. Shalom, V. Molinari, D. Esposito, G. Clavel, D. Ressnig, C. Giordano and M. Antonietti, Adv. Mater., 26, 1272 (2014).

    Article  CAS  Google Scholar 

  26. B. Alfons and M. Marek, J. Chem. Soc., Faraday Trans. 1, 80, 2331 (1984).

    Article  Google Scholar 

  27. Z. Wang, W. Yu, J. Chen, M. Zhang, W. Li and K. Tao, J. Alloys Compd., 466, 352 (2008).

    Article  CAS  Google Scholar 

  28. H. Wang, J. Xiong, X. Cheng, M. Fritz, A. Ispas, A. Bund, G. Chen, D. Wang and P. Schaaf, ACS Appl. Nano Mater., 3, 10986 (2020).

    Article  CAS  Google Scholar 

  29. W. Hua, H. Sun, H. Liu, Y. Li and J.-G. Wang, Appl. Surf. Sci., 540, 148407 (2021).

    Article  CAS  Google Scholar 

  30. X. Liu, Y. Guo, P. Wang, Q. Wu, Q. Zhang, E. A. Rozhkova, Z. Wang, Y. Liu, Z. Zheng, Y. Dai and B. Huang, ACS Appl. Energy Mater., 3, 2440 (2020).

    Article  CAS  Google Scholar 

  31. H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery and S. Z. Qiao, Adv. Mater., 33, 2007508 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21663023).

Author information

Authors and Affiliations

Authors

Contributions

Authors Banghua Peng, Jianning Wu and Feng Yu proposed an experimental approach; authors Weilin Weng and Jianhong Chen carried out synthesis of samples, performed their electrochemical study, XPS spectroscopy, TEM analysis and XRD techniques; authors Zhiyong Liu and Qingcui Liu took part in preparation of the manuscript; all authors participated in discussion of results.

Corresponding author

Correspondence to Banghua Peng.

Additional information

Conflicts of Interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, W., Chen, J., Liu, Q. et al. One-step synthesis of Ni3N@C hybrid and its catalytic activity for overall water splitting. Korean J. Chem. Eng. 39, 1788–1795 (2022). https://doi.org/10.1007/s11814-022-1123-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1123-2

Keywords

Navigation