Skip to main content

Advertisement

Log in

Experimental and computational phase behavior analysis of the PGME+CO2 and PGMEA+CO2 mixture at high pressures

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The vapor+liquid equilibrium (VLE) for the 2-components of propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA) in high pressure (HP) supercritical carbon dioxide (S-CO2) was evaluated. The solubility data determination was performed by the synthetic method at T=(313.2 to 393.2) K and p=(1.92 to 16.5) MPa. The obtained results indicated that the solubility of S-CO2 was found to increase monotonically with the increase of system temperature and mole fraction of PGME and PGMEA in binary (solute+solvent) mixtures. The solubility curve of PGME and PGMEA in the PGME+S-CO2 and PGMEA+S-CO2 models increases in connection with the increasing T at a steady pressure. The PGME+S-CO2 and PGMEA+S-CO2 models reveal type-I phase behavior (PB). The critical properties were achieved by Joback and Aspen plus method. Moreover, the experimental result adequately correlated with the Peng-Robinson equation of state (P-R E-O-S). Root mean square deviation (RMSD) for the PGME+S-CO2 [Joback: kij=0.0, hij=−0.060, Aspen: kij=0.0, hij=−0.065] and PGMEA+S-CO2 [Joback: kij=0.0, hij=0.0, Aspen: kij=0.0, hij=0.0] systems using two factors determined at 353.2 K was 9.07% (Joback), 10.98% (Aspen) and 4.03% (Joback), 4.78% (Aspen), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

fascination factor [Pa-m6/mol2]

b:

Co-volume factor [m3/mol]

BP:

bubble point [MPa]

CP:

critical point

DP:

dew point

N:

number of the data points

P:

pressure [Pa]

R:

universal gas constant [8.314462 J/(mol·K)]

T:

temperature [K]

v:

molar volume [m3·mol−1]

x:

liquid phase mole fractions

α :

alpha function

ω :

acentric factor

E-O-S :

equation of state

OF :

objective function

P-R :

Peng-Robinson

References

  1. K. Zelijko, D. Cor and M. K. Hrncic, J. Chem. Eng. Data, 63, 860 (2018).

    Article  Google Scholar 

  2. G. J. Philip and L. Walter, Chemical synthesis using supercritical fluids, Weinheim, Wiley-VCH (1999).

    Google Scholar 

  3. G. Brunner, Annu. Rev. Chem. Biomol. Eng., 1, 321 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. L.-S. Anne, C. Aymonier and F. Cansell, J. Chem. Technol. Biot., 85, 583 (2010).

    Article  Google Scholar 

  5. H.-S. Byun and H.-Y. Lee, J. Chem. Eng. Data, 51, 1436 (2006).

    Article  CAS  Google Scholar 

  6. H.-S. Byun, M.-Y. Choi and J.-S. Lim, J. Supercrit. Fluids, 37, 323 (2006).

    Article  CAS  Google Scholar 

  7. Y.-S. Jang, H.-H. Jeong and H.-S. Byun, J. Ind. Eng. Chem., 18, 414 (2012).

    Article  CAS  Google Scholar 

  8. S.-H. Kim, M.-H. Park, J.-S. Lim and H.-S. Byun, J. Ind. Eng. Chem., 16, 962 (2010).

    Article  CAS  Google Scholar 

  9. S.-H. Cho, D.-S. Yang and H.-S. Byun, Fluid Phase Equilib., 351, 18 (2013).

    Article  CAS  Google Scholar 

  10. C.-R. Kim and H.-S. Byun, Fluid Phase Equilib., 381, 51 (2014).

    Article  CAS  Google Scholar 

  11. S.-H. Cho, C.-R. Kim, S.-D. Yoon and H.-S. Byun, Fluid Phase Equilib., 396, 74 (2015).

    Article  CAS  Google Scholar 

  12. H.-S. Byun and D.-H. Lee, Ind. Eng. Chem. Res., 45, 3354 (2006).

    Article  CAS  Google Scholar 

  13. H.-S. Byun, B. M. Hasch and M. A. McHugh, Fluid Phase Equilib., 115, 179 (1996).

    Article  CAS  Google Scholar 

  14. H.-S. Byun and C. Park, Korean J. Chem. Eng., 19, 126 (2002).

    Article  CAS  Google Scholar 

  15. H.-S. Byun and J.-S. Shin, J. Chem. Eng. Data, 48, 97 (2003).

    Article  CAS  Google Scholar 

  16. L. Michele and M. A. McHugh, Fluid Phase Equilib., 157, 285 (1999).

    Article  Google Scholar 

  17. Y. Wu, M. S. Newkirk, S. T. Dudek, K. Williams, V. Krukonis and M. A. McHugh, Ind. Eng. Chem. Res., 53, 10133 (2014).

    Article  CAS  Google Scholar 

  18. J. Liu, D. Li, H.-S. Byun and M. A. McHugh, Fluid Phase Equilibria, 267, 39 (2008).

    Article  CAS  Google Scholar 

  19. J. M. G. Cowie and I. J. McEwen, Polymer, 24, 1453 (1983).

    Article  CAS  Google Scholar 

  20. J. M. G. Cowie and I. J. McEwen, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases, 70, 171 (1974).

    Article  CAS  Google Scholar 

  21. J. M. G. Cowie and I. J. McEwen, British Polymer J., 7, 459 (1975).

    Article  Google Scholar 

  22. H. Matsukawa, A. Fujii, T.-A. Hoshina and K. Otake, J. Chem. Eng. Data, 548, 113172 (2021).

    CAS  Google Scholar 

  23. N. V. K. A. Sudhir, B. R. Mellein, E. M. Saurer and J. F. Brennecke, J. Phys. Chem. B, 108, 20355 (2004).

    Article  Google Scholar 

  24. M. A. McHugh and V. J. Krukonis, Supercritical fluid extraction, 2nd ed., Butterworth-Heinemann, Stoneham (1994).

    Google Scholar 

  25. M. A. McHugh, F. Rindfleisch, P. T. Kuntz, C. Schmaltz and M. Buback, Polymer, 39, 6049 (1998).

    Article  CAS  Google Scholar 

  26. S.-H. Lee, M. A. LoStracco, B. M. Hasch and M. A. McHugh, J. Phys. Chem., 98, 4055 (1994).

    Article  CAS  Google Scholar 

  27. P. N. P. Ghoderao, D. Dhamodharan and H.-S. Byun, J. Chem. Thermodyn., 168, 106746 (2022).

    Article  CAS  Google Scholar 

  28. S.-H. Cho, C.-R. Kim, S.-D. Yoon and H.-S. Byun, Fluid Phase Equilib., 396, 74 (2015).

    Article  CAS  Google Scholar 

  29. R. R. Mallepally, V. S. Gadepalli, B. A. Bamgbade, N. Cain and M. A. McHugh, J. Chem. Eng. Data, 61, 2818 (2016).

    Article  CAS  Google Scholar 

  30. Y. Wu, M. S. Newkirk, S. T. Dudek, K. Williams, V. Krukonis and M. A. McHugh, Ind. Eng. Chem. Res., 53, 10133 (2014).

    Article  CAS  Google Scholar 

  31. K. L. Albrecht, F. P. Stein, S. J. Han, C. J. Gregg and M. Radosz, Fluid Phase Equilib., 117, 84 (1996).

    Article  CAS  Google Scholar 

  32. B. Folie, C. Gregg, G. Luft and M. Radosz, Fluid Phase Equilib., 120, 11 (1996).

    Article  CAS  Google Scholar 

  33. E. Kiran, J. Supercrit. Fluids, 110, 126 (2016).

    Article  CAS  Google Scholar 

  34. B. E. Poling, J. M. Prausnitz and J. P. O’connell, The properties of gases and liquids, Vol. 5, McGraw-Hill, New York (2001).

    Google Scholar 

  35. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  36. C.-T. Hsieh, M.-J. Lee and H.-M. Lin, Ind. Eng. Chem. Res., 45, 2123 (2006).

    Article  CAS  Google Scholar 

  37. L. S. Robert and P. H. van Konynenburg, Discuss. Faraday Soc., 49, 87 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through “A supporting program for the middle market enterprises in each region” (No. P0017536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Soo Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, YT., Dhamodharan, D., Choi, H. et al. Experimental and computational phase behavior analysis of the PGME+CO2 and PGMEA+CO2 mixture at high pressures. Korean J. Chem. Eng. 39, 2783–2791 (2022). https://doi.org/10.1007/s11814-022-1110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1110-7

Keywords

Navigation