Skip to main content

Advertisement

Log in

Scrap oxidation of uranium carbide heavy ion accelerator target material

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The use of uranium carbide for extracting uranium, a rare and valuable material, has garnered significant research interest. The long-term storage of uranium scrap is challenging due to the risk of ignition and contents of nuclear materials. Thus, scrap treatment is required for safe storage and volume reduction. We investigated the oxidation behavior of different types of multi-walled carbon nanotube-containing uranium scraps (green and sintered) in different forms (fragmented and powdered) using thermogravimetric/differential thermal analysis and volatilization studies. An air flow and oxidation temperature of 500 cm3/min and 900 °C, respectively, were suitable for the effective recovery of inert U3O8 for safe storage or recycling. For optimal results, scrap in powder form should be used. These findings provide insights for recycling uranium from uranium carbide scrap, with potential applications in research and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gasparrini, R. Podor, D. Horlait, M. J. D. Rushton, O. Fiquet and W. E. Lee, J. Nucl. Mater., 494, 127 (2017).

    Article  CAS  Google Scholar 

  2. B. M. Ma, Nuclear reactor materials and applications, Van Nostrand Reinhold, New York (1983).

    Google Scholar 

  3. F. Le Guyadec, C. Rado, J. Joffre, S. Coullomb, C. Chatillon and E. Blanquet, J. Nucl. Mater., 393, 333 (2009).

    Article  CAS  Google Scholar 

  4. K. A. Peakall and J. E. Antill, J. Less-Common Met., 4, 426 (1962).

    Article  CAS  Google Scholar 

  5. K. Naito, N. Kamegashira, T. Kondo and S. Takeda, J. Nucl. Sci. Technol., 13, 260 (1976).

    Article  CAS  Google Scholar 

  6. D. Scarpa, L. Biasetto, S. Corradetti, M. Manzolaro, A. Andrighetto, S. Carturan, G. Prete, P. Zanonato and D. W. Stracener, Eur. Phys. J. A, 47, 32 (2011).

    Article  Google Scholar 

  7. J. P. Ramos, Nucl. Instrum. Methods Phys. Res. B, 463, 201 (2020).

    Article  CAS  Google Scholar 

  8. B. Hy, N. Barré-Boscher, A. Özgümüs, B. Roussière, S. Tusseau-Nenez, C. Lau, M. Cheikh Mhamed, M. Raynaud, A. Said, K. Kolos, E. Cottereau, S. Essabaa, O. Tougait and M. Pasturel, Nucl. Instrum. Methods Phys. Res. B, 288, 34 (2012).

    Article  CAS  Google Scholar 

  9. A. Andrighetto, L. Biasetto, M. Manzolaro, M. Barbui, G. Bisoffi, S. Carturan, M. Cinausero, F. Gramegna, G. Prete, V. Rizzi, C. Antonucci, S. Cevolani, C. Petrovich, P. Colombo, G. Meneghetti, P. Di Bernardo, P. Zanonato, I. Cristofolini, V. Fontanari, B. Monelli and R. Oboe, Nucl. Instrum. Methods Phys. Res. B, 266, 4257 (2008).

    Article  CAS  Google Scholar 

  10. S. Corradetti, A. Andrighetto, M. Manzolaro, D. Scarpa, J. Vasquez, M. Rossignoli, A. Monetti, M. Calderolla and G. Prete, EPJ Web Conf., 66, 11009 (2014).

    Article  Google Scholar 

  11. S. Carturan, M. Tonezzer, L. Piga, P. Zanonato, P. Colombo, A. Andrighetto, L. Biasetto, P. Di Bernardo, G. Maggioni, F. Gramegna and G. Prete, Nucl. Instrum. Methods Phys. Res. A, 583, 256 (2007).

    Article  CAS  Google Scholar 

  12. Y. Zhang and G. D. Alton, Nucl. Instrum. Methods Phys. Res. A, 521, 72 (2004).

    Article  CAS  Google Scholar 

  13. L. Biasetto, P. Zanonato, S. Carturan, P. Di Bernardo, P. Colombo, A. Andrighetto and G. Prete, J. Nucl. Mater., 404, 68 (2010).

    Article  CAS  Google Scholar 

  14. M. J. Joung, J. W. Jeong, W. Hwang, S. G. Hong, J. Y. Kim, S. J. Park, H. J. Woo, B. H. Kang and S. H. Na, Nucl. Instrum. Methods Phys. Res. B, 456, 97 (2019).

    Article  CAS  Google Scholar 

  15. A. Monetti, R. A. Bark, A. Andrighetto, P. Beukes, J. L. Conradie, S. Corradetti, D. Fourie, C. Lussi, M. Manzolaro, G. Meneghetti, G. Prete, M. Rossignoli, D. Scarpa, P. Van Schalkwyk, N. Stoddart and J. Vasquez, Eur. Phys. J. A, 52, 168 (2016).

    Article  Google Scholar 

  16. A. Monetti, A. Andrighetto, C. Petrovich, M. Manzolaro, S. Corradetti, D. Scarpa, F. Rossetto, F. M. Dominguez, J. Vasquez, M. Rossignoli, M. Calderolla, R. Silingardi, A. Mozzi, F. Borgna, G. Vivian, E. Boratto, M. Ballan, G. Prete and G. Meneghetti, Eur. Phys. J. A, 51, 128 (2015).

    Article  Google Scholar 

  17. Environment Agency Interim Advice on Wastes Containing Unbound Carbon Nanotubes (May 2008). Available from https://nanotech.law.asu.edu/Documents/2009/08/nano-waste_199_5154.pdf.

  18. S. P. B. Sousa, T. Peixoto, R. M. Santos, A. Lopes, M. D. C. Paiva and A. T. Marques, J. Compos. Sci., 4, 106 (2020).

    Article  CAS  Google Scholar 

  19. J. J. Contreras-Navarrete, F. G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, M. R. Cisneros-Magaña, L. García-González, L. Zamora-Peredo and M. L. Mondragón-Sánchez, Superficies y Vacío, 28, 111 (2015).

    CAS  Google Scholar 

  20. C. Gasparrini, R. Podor, O. Fiquet, D. Horlait, S. May, M. R. Wenman and W. E. Lee, Corros. Sci., 151, 44 (2019).

    Article  CAS  Google Scholar 

  21. S. K. Mukerjee, G. A. Rama Rao, J. V. Dehadraya, V. N. Vaidya, V. Venugopal and D. D. Sood, J. Nucl. Mater., 210, 97 (1994).

    Article  CAS  Google Scholar 

  22. H. J. Borchardt, J. Inorg. Nucl. Chem., 12, 113 (1959).

    Article  CAS  Google Scholar 

  23. R. M. Dell and V. J. Wheeler, J. Nucl. Mater., 21, 328 (1967).

    Article  CAS  Google Scholar 

  24. B. H. Jo, Y. H. Shim, B. H. Kang and J. W. Jung, South Korea Patent, 10-2235855 (2021).

  25. L. Biasetto, S. Corradetti, S. Carturan, R. Eloirdi, P. Amador-Celdran, D. Staicu, O. Dieste Blanco and A. Andrighetto, Sci. Rep., 8, 8272 (2018).

    Article  CAS  Google Scholar 

  26. C. Lau, B. Roussière, D. Verney, O. Bajeat, F. Ibrahim, F. Clapier, E. Cottereau, C. Donzaud, M. Ducourtieux, S. Essabaa, D. Guillemaud-Mueller, F. Hosni, H. Lefort, F. Le Blanc, A. C. Mueller, J. Obert, N. Pauwels, J. C. Potier, F. Pougheon, J. Proust, J. Sauvage and A. Wojtasiewicz, Nucl. Instrum. Methods Phys. Res. B, 204, 246 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Rare Isotope Accelerator Development Project through the Ministry of Science and ICT, National Research Foundation of Korea, and Institute for Basic Science (Study Number: NRF-2019-M7A1A1-032994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohyun Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, B., Shim, Y. Scrap oxidation of uranium carbide heavy ion accelerator target material. Korean J. Chem. Eng. 39, 2810–2816 (2022). https://doi.org/10.1007/s11814-022-1108-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1108-1

Keywords

Navigation