Skip to main content
Log in

Ultra-thin polymer-encapsulation of SrAl2O4:Eu2+, Dy3+ phosphor for enhanced hydrolytic resistance

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Eu2+ and Dy3+ doped strontium aluminates (SrAl2O4:Eu2+, Dy3+) are well known green light emitting materials with a long-lasting afterglow property; however, SrAl2O4:Eu2+, Dy3+ is readily hydrolized under ambient moisture conditions, which impedes industrial applications. In this work, SrAl2O4:Eu2+, Dy3+ phosphor was encapsulated by layer-by-layer (LbL) and coacervation methods for the formation of ultra-thin polymeric capsulation layer. Morphology of the phosphor and polymer-encapsulated phosphors was characterized by scanning electron microscopy (SEM). The amount and thickness of the encapsulated polymer layers were analyzed by thermogravimetric analysis (TGA) and atomic force microscopy (AFM), and the polymer content for the phosphor encapsulated by LbL was estimated to be 0.08 wt% with a shell thickness of 11 nm. After pristine phosphor and encapsulated phosphor samples were immersed in water for 24 h, the photoluminescence (PL) intensity was measured to compare the water-resistant performance. The polymer-encapsulated phosphors by LbL and coacervation methods were maintained for 85.7 and 93.5% of pristine phosphors, respectively, while PL intensity of the pristine phosphor was observed as 18.1% after immersion in water for 24 h. The change in pH was monitored under the same conditions. The pH for the dispersion of polymer-encapsulated phosphors by LbL and coacervation methods was measured as 10.27 and 9.63, respectively, while pH for the dispersion of the pristine phosphor was observed as 11.99. This research may provide a wider option for the encapsulation methods of particulate materials for applications where encapsulation with very thin layer of polymer is needed, because the encapsulation process inevitably lowers both the content of active ingredients and consequently their performance as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Rojas-Hernandez, F. Rubio-Marcos, M. A. Rodriguez and J. F. Fernandez, Renew. Sustain. Energy. Rev., 81, 2759 (2018).

    Article  CAS  Google Scholar 

  2. H. Yamamoto and T. Matsuzawa, J. Lumin., 72–74, 287 (1997).

    Article  Google Scholar 

  3. P. Zeng, X. Wei, M. Yin and Y. Chen, J. Lumin., 199, 400 (2018).

    Article  CAS  Google Scholar 

  4. J. Nance and T. D. Sparks, Prog. Org. Coat., 144, 105637 (2020).

    Article  CAS  Google Scholar 

  5. J. I. Park, S. H. Jeong and I. W. Cheong, J. Adhes. Interface, 17, 110 (2016).

    Article  Google Scholar 

  6. Y. Bi, J. Pei, Z. Chen, L. Zhang, R. Li and D. Hu, Int. J. Pavement Res. Technol., 14, 252 (2021).

    Article  Google Scholar 

  7. J. Nance and T. D. Sparks, Prog. Org. Coat., 148, 105749 (2020).

    Article  CAS  Google Scholar 

  8. X. Lu, Mater. Chem. Phys., 93, 526 (2005).

    Article  Google Scholar 

  9. Y. Zhu, M. Zheng, J. Zeng, Y. Xiao and Y. Liu, Mater. Chem. Phys., 113, 721 (2009).

    Article  CAS  Google Scholar 

  10. H. N. Luitel, T. Watari, T. Torikai, M. Yada, R. Chand, C.-N. Xu and K. Nanoka, Appl. Surf. Sci., 256, 2347 (2010).

    Article  CAS  Google Scholar 

  11. Y. Imal, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada and C.-N. Xu, J. Electrochem. Soc., 154, J77 (2007).

    Article  Google Scholar 

  12. M. Tayebi, S. O. Movahed and A. Ahmadpour, RSC Adv., 9, 38703 (2019).

    Article  CAS  Google Scholar 

  13. J. Yan, Z. Tang, S. Luo and Z. Zhang, Key Eng. Mater., 280–283, 509 (2005).

    Google Scholar 

  14. C. Guo, B. Chu and Q. Su, Appl. Surf. Sci., 225, 198 (2004).

    Article  CAS  Google Scholar 

  15. X. Lu, M. Zhong, W. Shu, Q. Yu, X. Xiong and R. Wang, Powder Technol., 177, 83 (2007).

    Article  CAS  Google Scholar 

  16. H. Wang, X. Liang, K. Liu, Q. Zhou, J. Wang, P. Chen, B. He and J. Li, Key Eng. Mater., 680, 224 (2016).

    Article  Google Scholar 

  17. S. Khursheed, G. A. Sheergojri and J. Sharma, Mater. Today Proc., 21, 2096 (2020).

    Article  CAS  Google Scholar 

  18. Q. He and C. Hu, Opt. Mater., 38, 286 (2014).

    Article  CAS  Google Scholar 

  19. M. Shi, B. Lu, Y. Jin and M. Ge, J. Mater. Sci. Mater. Electron., 32, 20804 (2021).

    Article  CAS  Google Scholar 

  20. Y. Wu, J. Gan and X. Wu, J. Mater. Res. Technol., 13, 1230 (2021).

    Article  CAS  Google Scholar 

  21. L. Lyu, Y. Chen, L. Yu, L. Zhang and J. Pei, Materials, 13, 426 (2020).

    Article  Google Scholar 

  22. H. L. Frisch, J. Phys. Chem., 61, 93 (1957).

    Article  CAS  Google Scholar 

  23. J.-H. Ahn, Y.-S. Jeong, I.-T. Kim, S.-H. Jeon and C.-H. Park, Sensors, 19, 1416 (2019).

    Article  CAS  Google Scholar 

  24. H. M. Hajar, M. J. Suriani, M. G. M. Sabri, M. J. Ghazali and W. B. W. Nik, Biosci. Biotechnol. Res. Asia, 12, 71 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are very grateful for financial support from the Korea Agency for Infrastructure Technology Advancement (Grant No. 19POQW-B152733-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Chul Kim, Jin Joo or In Woo Cheong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.M., Heo, J.H., Kim, J.C. et al. Ultra-thin polymer-encapsulation of SrAl2O4:Eu2+, Dy3+ phosphor for enhanced hydrolytic resistance. Korean J. Chem. Eng. 39, 2548–2554 (2022). https://doi.org/10.1007/s11814-022-1103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1103-6

Keywords

Navigation