Skip to main content
Log in

In silico prediction and analysis of dielectric constant of ionic liquids

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are a class of chemicals comprising cations and anions whose properties can be controlled by modifying their chemical structure, which enables a wide range of applications. Among the attractive properties of ILs, dielectric permittivity provides important information related to material solvation and capacitor characteristics. Because there are several ILs and a need to understand the structural effect on their properties, prediction model(s) should be developed. For this, we employed the linear free-energy relationship (LFER) equation to predict the dielectric constant of ILs. In the modeling, we used in silico calculated molecular descriptors because the empirically LFER estimated descriptors were limited. The results revealed that the developed model could predict the dielectric constant with an R2 of 0.882. From the developed model, it was observed that the dielectric constant was more affected by the structure of cations compared to that of anions. In addition, the H-bonding acidity of the cation and basicity of the anion contributed to the dielectric property of ILs, and the dipolarity/polarizability of cations and anions was also important in the prediction. The predictive model is expected to be useful for designing IL structures considering the dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Greer, J. Jacquemin and C. Hardacre, Molecules, 25, 5270 (2020).

    Article  Google Scholar 

  2. N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 37, 123 (2008).

    Article  CAS  Google Scholar 

  3. M. M. Huang and H. Weingartner, Chemphyschem, 9, 2172 (2008).

    Article  CAS  Google Scholar 

  4. S. C. Moldoveanu and V. David, in Essentials in modern HPLC separations, S. C. Moldoveanu and V. David Eds., Elsevier Science Publishing Co Inc, MA (2013).

  5. L. W. McKeen (Ed.) Film properties of plastics and elastomers (Third edition), William Andrew Publishing, Boston, MA (2012).

    Google Scholar 

  6. J. S. Holbrey and R. Kenneth, Clean Products and Processes, 1, 223 (1999).

    Google Scholar 

  7. P. C. S. Costa, J. S. Evangelista, I. Leal and P. Miranda, Mathematics, 9, 3110 (2021).

    Article  Google Scholar 

  8. C. W. Cho, U. Preiss, C. Jungnickel, S. Stolte, J. Arning, J. Ranke, A. Klamt, I. Krossing and J. Thöming, J. Phys. Chem. B, 115, 6040 (2011).

    Article  CAS  Google Scholar 

  9. C. W. Cho, S. Stolte and Y. S. Yun, Sci. Total Environ., 633, 920 (2018).

    Article  CAS  Google Scholar 

  10. C. W. Cho and Y. S. Yun, Environ. Pollut., 255, 113185 (2019).

    Article  CAS  Google Scholar 

  11. C. W. Cho, Y. F. Zhao, J. W. Choi, J. A. Kim, J. K. Bediako, S. Lin, M. H. Song and Y. S. Yun, Environ. Res., 192, 110271 (2021).

    Article  CAS  Google Scholar 

  12. M. H. Abraham and W. E. Acree, J. Org. Chem., 75, 3021 (2010).

    Article  CAS  Google Scholar 

  13. M. H. Abraham and W. E. Acree, Phys. Chem. Chem. Phys., 12, 13182 (2010).

    Article  CAS  Google Scholar 

  14. M. H. Abraham and W. E. Acree, J. Chromatogr. A, 1430, 2 (2016).

    Article  CAS  Google Scholar 

  15. C. W. Cho, J. S. Park, S. Stolte and Y. S. Yun, J. Hazard. Mater., 311, 168 (2016).

    Article  CAS  Google Scholar 

  16. C. W. Cho, Y. Zhao and Y. S. Yun, Water Res., 151, 288 (2019).

    Article  CAS  Google Scholar 

  17. S. Endo, T. N. Brown, N. Watanabe, N. Ulrich, G. Bronner, M. Abraham and K.-U. Goss, Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ (2015).

  18. C.W. Cho, S. Stolte, Y. S. Yun, I. Krossing and J. Thöming, RSC Adv., 5, 80634 (2015).

    Article  CAS  Google Scholar 

  19. Y. Zhou, Z. Lin, K. J. Wu, G. H. Xu and C. H. He, Chin. J. Chem. Eng., 22, 79 (2014).

    Article  CAS  Google Scholar 

  20. A. Rybinska-Fryca, A. Sosnowska and T. Puzyn, J. Mol. Liq., 260, 57 (2018).

    Article  CAS  Google Scholar 

  21. P. Eiden, S. Bulut, T. Köchner, C. Friedrich, T. Schubert and I. Krossing, J. Phys. Chem. B, 115, 300 (2011).

    Article  CAS  Google Scholar 

  22. M. M. Huang, Y. P. Jiang, P. Sasisanker, G. W. Driver and H. Weingartner, J. Chem. Eng. Data, 56, 1494 (2011).

    Article  CAS  Google Scholar 

  23. H. Weingartner, P. Sasisanker, C. Daguenet, P. J. Dyson, I. Krossing, J. M. Slattery and T. Schubert, J. Phys. Chem. B, 111, 4775 (2007).

    Article  Google Scholar 

  24. H. Weingartner, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 220, 1395 (2006).

    Google Scholar 

  25. K. Nakamura and T. Shikata, Chemphyschem, 11, 285 (2010).

    Article  CAS  Google Scholar 

  26. J. Hunger, A. Stoppa, S. Schrodle, G. Hefter and R. Buchner, Chemphyschem, 10, 723 (2009).

    Article  CAS  Google Scholar 

  27. C. Wakai, A. Oleinikova, M. Ott and H. Weingartner, J. Phys. Chem. B, 109, 17028 (2005).

    Article  CAS  Google Scholar 

  28. J. Hunger, A. Stoppa, R. Buchner and G. Hefter, J. Phys. Chem. B, 112, 12913 (2008).

    Article  CAS  Google Scholar 

  29. A. Stoppa, R. Buchner and G. Hefter, J. Mol. Liq., 153, 46 (2010).

    Article  CAS  Google Scholar 

  30. T. Singh and A. Kumar, J. Phys. Chem. B, 112, 12968 (2008).

    Article  CAS  Google Scholar 

  31. Y. H. Zhao and M. H. Abraham, J. Org. Chem., 70, 2633 (2005).

    Article  CAS  Google Scholar 

  32. M. H. Abraham and W. E. Acree, J. Org. Chem., 75, 1006 (2010).

    Article  CAS  Google Scholar 

  33. R. G. Y. Parr and Y. Weitao, Density-functional theory of atoms and molecules, OUP, Oxford (1989).

    Google Scholar 

  34. A. Schäfer, C. Huber and R. Ahlrichs, Chem. Phys., 100, 5829 (1994).

    Google Scholar 

  35. F. Eckert, COSMOtherm reference manual, version C3.0, Release 15.01., Leverkusen, Germany (1999–2014).

    Google Scholar 

  36. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, J. Cheminformatics, 3, 33 (2011).

    Article  Google Scholar 

  37. J. Hunger, A. Stoppa, R. Buchner and G. Hefter, J. Phys. Chem. B, 113, 9527 (2009).

    Article  CAS  Google Scholar 

  38. A. Stoppa, J. Hunger, R. Buchner, G. Hefter, A. Thoman and H. Helm, J. Phys. Chem. B, 112, 4854 (2008).

    Article  CAS  Google Scholar 

  39. B. L. Shi, J. Mol. Liq., 299, 112216 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Korean government through the NRF (2017R1A6A3A04003316, 2020R1A2C3009769).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul-Woong Cho or Yeoung-Sang Yun.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, CW., Yun, YS. In silico prediction and analysis of dielectric constant of ionic liquids. Korean J. Chem. Eng. 39, 1651–1657 (2022). https://doi.org/10.1007/s11814-022-1096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1096-1

Keywords

Navigation