Skip to main content
Log in

Multiomics characterization of dose- and time-dependent effects of ionizing radiation on human skin keratinocytes

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ionizing radiation is used for various purposes, such as cancer treatment and medical diagnosis. As skin keratinocytes are frequently exposed to various radiation doses, the risk of developing skin diseases is also increasing. However, knowledge of the biological response of human keratinocytes to radiation doses and time-points is still limited despite its importance. Here, we characterized the proteomic and metabolomic changes in HEKn cells on day 0 and 2 after irradiation with control, 0.1, 0.5, and 2 Gy to identify biological effects depending on IR dose and time. First, we found that the expression levels of proteins and metabolites involved in energy metabolism, DNA repair system, and epidermal cornification were changed following irradiation. In particular, fumarate and fumarate hydratase, which promote DNA repair, were significantly increased in response to irradiation with 2 Gy on day 2. Furthermore, all doses of IR-induced proteomic changes correlated with epidermal cornification and inhibition of cell death on day 2 after irradiation. Using a human skin 3D full-thickness model, we observed dose-dependent increases in the cornified layer and the expression of involucrin. The multiomics signatures of cellular responses depending on IR dose and time may constitute a high-value resource, providing biological effects on IR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Redon, J. S. Dickey, W. M. Bonner and O. A. Sedelnikova, Adv. Space Res., 43, 1171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. U. Veronesi, M. D. Vecchio, M. Greco, V. Galimberti, M. Merson, F. Rilke, V. Sacchini, R. Saccozzi, T. Savio, R. Zucali, S. Zurrida and B. Salvadori, N. Engl, J. Med., 328, 1587 (1993).

    CAS  Google Scholar 

  3. M. B. M. M. Rehani, Br. Med. J., 320, 593 (2000).

    Article  CAS  Google Scholar 

  4. W. Kim, S. Lee, D. Seo, D. Kim, K. Kim, E. Kim, J. Kang, K. M. Seong, H. Youn and B. Youn, Cells, 8, 1105 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  5. H. P. Rodemann and M. A. Blaese, Semin. Radiat. Oncol., 17, 81 (2007).

    Article  PubMed  Google Scholar 

  6. K. Lumniczky, N. Impens, G. Armengol, S. Candeias, A. G. Georgakilas, S. Hornhardt, O. A. Martin, F. Rodel and D. Schaue, Environ. Int., 149, 106212 (2021).

    Article  PubMed  Google Scholar 

  7. T. Miyake, M. Shimada, Y. Matsumoto and A. Okino, Int. J. Radiat. Oncol. Biol. Phys., 105, 193 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. F. A. Mendelsohn, C. M. Divino, E. D. Reis and M. D. Kerstein, Adv. Skin Wound Care, 15, 216 (2002).

    Article  PubMed  Google Scholar 

  9. T. Revenco, G. Lapouge, V. Moers, S. Brohee and P. A. Sotiropoulou, Stem Cells, 35, 1355 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. K. R. Brown and E. Rzucidlo, J. Vasc. Surg., 53, 15S (2011).

    Article  PubMed  Google Scholar 

  11. A. B. Wolbarst, A. L. Wiley, J. B. Nemhauser, D. M. Christensen and W. R. Hendee, Radiology, 254, 660 (2010).

    Article  PubMed  Google Scholar 

  12. Z. P. Hu, Y. M. Kim, M. B. Sowa, R. J. Robinson, X. Gao, T. O. Metz, W. F. Morgan and Q. Zhang, Mol. Biosyst., 8, 1979 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. K. Sekihara, K. Saitoh, H. Yang, H. Kawashima, S. Kazuno, M. Kikkawa, H. Arai, T. Miida, N. Hayashi, F. Niyonsaba, K. Sasai and Y. Tabe, PLoS One, 13, e0199117 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. J. Lamartine, N. Franco, P. Le Minter, P. Soularue, O. Alibert, J. J. Leplat, X. Gidrol, G. Waksman and M. T. Martin, J. Cell. Biochem., 95, 620 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. C. Coman, F. A. Solari, A. Hentschel, A. Sickmann, R. P. Zahedi and R. Ahrends, Mol. Cell. Proteom., 15, 1453 (2016).

    Article  CAS  Google Scholar 

  16. W.-S. Song, S. G. Shin, S.-H. Jo, J.-S. Lee, H.-J. Jeon, J.-E. Kwon, J.-H. Park, S. Cho, J. H. Jeong, B.-G. Kim and Y.-G. Kim, Biotechnol. Bioeng., 118, 1612 (2021).

    CAS  PubMed  Google Scholar 

  17. S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann and J. Cox, Nat. Methods, 13, 731 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. J.-S. Lee, W.-S. Song, J. W. Lim, T.-R. Choi, S.-H. Jo, H.-J. Jeon, J.-E. Kwon, J.-H. Park, Y.-R. Kim, Y.-H. Yang, J. H. Jeong and Y.-G. Kim, Biotechnol. J., 17, e2100397 (2022).

    Article  PubMed  CAS  Google Scholar 

  19. H. Mi, A. Muruganujan, X. Huang, D. Ebert, C. Mills, X. Guo and P. D. Thomas, Nat. Protoc., 14, 703 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi and P. Kaur, Nat. Protoc., 2, 178 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. H.-J. Kim, D. J. Min, S. H. Lee, J. W. Lim, N. Jung, H. W. Ryu, J. H. Jeong, Mater. Lett., 253, 298 (2019).

    Article  CAS  Google Scholar 

  22. E. Shin, S. Lee, H. Kang, J. Kim, K. Kim, H. Youn, Y. W. Jin, S. Seo and B. Youn, Front. Genet., 11, 566244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O. Chatzidoukaki, E. Goulielmaki, B. Schumacher and G. A. Garinis, Trends Genet., 36, 777 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. W. Wang, J. Luo, W. Sheng, J. Xue, M. Li, J. Ji, P. Liu, X. Zhang, J. Cao and S. Zhang, Int. J. Radiat. Oncol. Biol. Phys., 95, 751 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. H. B. Forrester, D. M. de Kretser, T. Leong, J. Hagekyriakou and C. N. Sprung, PLoS One, 12, e0173788 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. D. Bungard, B. J. Fuerth, P. Zeng, B. Faubert, N. L. Maas, B. Viollet, D. Carling, C. B. Thompson, R. G. Jones and S. L. Berger, Science, 329, 1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. Dhami, D. K. Trivedi, R. Goodacre, D. Mainwaring and D. P. Humphreys, Metabolomics, 14, 136 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Yang, A. N. Lane, C. J. Ricketts, C. Sourbier, M. H. Wei, B. Shuch, L. Pike, M. Wu, T. A. Rouault, L. G. Boros, T. W. Fan and W. M. Linehan, PLoS One, 8, e72179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Martinez-Reyes and N. S. Chandel, Nat. Commun., 11, 102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. W. Miller, D. R. Soto-Pantoja, A. L. Schwartz, J. M. Sipes, W. G. DeGraff, L. A. Ridnour, D. A. Wink and D. D. Roberts, J. Biol. Chem., 290, 24858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Leshets, Y. B. H. Silas, N. Lehming and O. Pines, Front. Mol. Biosci., 5, 68 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. O. Yogev, O. Yogev, E. Singer, E. Shaulian, M. Goldberg, T. D. Fox and O. Pines, PLoS Biol., 8, e1000328 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. S. P. Lees-Miller, Nat. Cell Biol., 17, 1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. H. Maruta, N. Okita, R. Takasawa, F. Uchiumi, T. Hatano and S. Tanuma, Biol. Pharm. Bull., 30, 447 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. A. Sreedhar, L. Aguilera-Aguirre and K. K. Singh, Cell Death Dis., 11, 444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W. L. Santivasi and F. Xia, Antioxid. Redox Signal., 21, 251 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. M.-O. Turgeon, N. J. S. Perry and G. Poulogiannis, Front. Oncol., 8, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. H. C. Yoo, Y. C. Yu, Y. Sung and J. M. Han, Exp. Mol. Med., 52, 1496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. P. Simoniello, J. Wiedemann, J. Zink, E. Thoennes, M. Stange, P. G. Layer, M. Kovacs, M. Podda, M. Durante and C. Fournier, Front. Oncol., 5, 294 (2015).

    PubMed  Google Scholar 

  40. H. Jang, H. Myung, J. Lee, J. K. Myung, W. S. Jang, S. J. Lee, C. H. Bae, H. Kim, S. Park and S. Shim, Int. J. Mol. Sci., 19, 892 (2018).

    Article  CAS  Google Scholar 

  41. K. Kinoshita, H. Ishimine, K. Shiraishi, H. Kato, K. Doi, S. Kuno, K. Kanayama, K. Mineda, T. Mashiko, J. Feng, K. Nakagawa, A. Kurisaki, S. Itami and K. Yoshimura, Cells Tissues Organs, 200, 240 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. N. A. Robinson, S. Lapic, J. F. Welter and R. L. Eckert, J. Biol. Chem., 272, 12035 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. E. Candi, R. Schmidt and G. Melino, Nat. Rev. Mol. Cell. Biol., 6, 328 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. K. Ackermann, S. L. Borgia, H. C. Korting, K. R. Mewes and M. Schäfer-Korting, Skin Pharmacol. Physiol., 23, 105 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. J. D’Orazio, S. Jarrett, A. Amaro-Ortiz and T. Scott, Int. J. Mol. Sci., 14, 12222 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. F. M. Watt, J. Invest. Dermatol., 81, 100s (1983).

    Article  CAS  PubMed  Google Scholar 

  47. P. M. Elias, M. L. Williams, M. E. Maloney, J. A. Bonifas, B. E. Brown, S. Grayson and E. H. Epstein, Jr., J. Clin. Invest., 74, 1414 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. F. N. Bray, B. J. Simmons, A. H. Wolfson and K. Nouri, Dermatol. Ther., 6, 185 (2016).

    Article  Google Scholar 

  49. C. M. Hammers and J. R. Stanley, J. Clin. Invest., 123, 1419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. C. Thomas, D. Tattersall, E. E. Norgett, E. A. O’Toole and D. P. Kelsell, Ame. J. Pathol., 174, 970 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2017M3A9E4077235, NRF-2018R1D1A1B07048185, NRF-2019M2C8A2058418, NRF-2020R1A6A1A03044977) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HP20C0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Gon Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, WS., Lee, JS., Lim, J.W. et al. Multiomics characterization of dose- and time-dependent effects of ionizing radiation on human skin keratinocytes. Korean J. Chem. Eng. 39, 2455–2464 (2022). https://doi.org/10.1007/s11814-022-1095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1095-2

Keywords

Navigation