Skip to main content

Advertisement

Log in

Flow analysis and development of a model to simulate transient temperature of hydrogen from pre-cooler to on-board storage tank during hydrogen refueling

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen energy is expected to play an important role in energy transition policies. Currently, the utilization of hydrogen energy is mainly in the field of mobility associated with fuel cell electric vehicles (FCEVs). To increase the utilization of FCEVs, it is essential to develop a method for safely refueling hydrogen into on-board storage tanks which have a temperature limitation. Therefore, it is necessary to understand the flow and heat transfer characteristics of hydrogen to keep the temperature lower than the limitation. In this study, a model for predicting the temperature of hydrogen at the pipeline outlet was developed based on flow characteristics analysis. It is revealed that the flow in a pipeline can be considered as incompressible and that the turbulence model can be applied with respect to pressure, temperature, and pipeline diameter. The proposed model is based on energy balances of the pipeline and the flowing hydrogen. Analogous methods are compared to obtain heat transfer coefficient required for thermal analysis. Although there is a difference in the heat transfer coefficient with respect to the analogous methods, little difference is found in the hydrogen temperature. Additionally, it is found that the equivalent length can be used to account for the thermal mass of the pipeline and the experimental results can be accurately simulated using a relatively large external heat transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li and S. Kimura, Energy Policy, 148, 111980 (2021).

    Article  CAS  Google Scholar 

  2. T. Stangarone, Clean Technol. Environ. Policy, 23, 509 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. SAE Engineers, Fueling protocols for light duty gaseous hydrogen surface vehicles, SAE International (2020).

  4. C. Cunanan, M.-K. Tran, Y. Lee, S. Kwok, V. Leung and M. Fowler, Clean Technol., 3, 474 (2021).

    Article  Google Scholar 

  5. SAE Engineers, Fueling protocol for gaseous hydrogen powered heavy duty vehicles, SAE International (2014).

  6. G. Xu, K. Pareek, N. Li and H. Cheng, Int. J. Hydrogen Energy, 40, 16330 (2015).

    Article  CAS  Google Scholar 

  7. K. Pareek, R. Rohan, Z. Chen, D. Zhao and H. Cheng, Int. J. Hydrogen Energy, 42, 6801 (2017).

    Article  CAS  Google Scholar 

  8. T. Hua, R. Ahluwalia, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law and J. Sinha, Int. J. Hydrogen Energy, 36, 3037 (2011).

    Article  CAS  Google Scholar 

  9. R. K. Ahluwalia, T. Hua and J. Peng, Int. J. Hydrogen Energy, 37, 2891 (2012).

    Article  CAS  Google Scholar 

  10. C. He, R. Yu, H. Sun and Z. Chen, Int. J. Hydrogen Energy, 41, 15812 (2016).

    Article  CAS  Google Scholar 

  11. M. Li, Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset and M. Zhang, Int. J. Hydrogen Energy, 44, 10677 (2019).

    Article  CAS  Google Scholar 

  12. S. Maus, J. Hapke, C. N. Ranong, E. Wüchner, G. Friedlmeier and D. Wenger, Int. J. Hydrogen Energy, 33, 4612 (2008).

    Article  CAS  Google Scholar 

  13. R. O. Cebolla, B. Acosta, P. Moretto and N. De Miguel, Int. J. Hydrogen Energy, 44, 8601 (2019).

    Article  Google Scholar 

  14. R. O. Cebolla, B. Acosta, P. Moretto, N. Frischauf, F. Harskamp, C. Bonato and D. Baraldi, Int. J. Hydrogen Energy, 39, 6261 (2014).

    Article  Google Scholar 

  15. B. Acosta, P. Moretto, N. de Miguel, R. Ortiz, F. Harskamp and C. Bonato, Int. J. Hydrogen Energy, 39, 20531 (2014).

    Article  CAS  Google Scholar 

  16. T. Bourgeois, F. Ammouri, M. Weber and C. Knapik, Int. J. Hydrogen Energy, 40, 11748 (2015).

    Article  CAS  Google Scholar 

  17. C. J. B. Dicken and W. Merida, Numer. Heat Transf.; A: Appl., 53, 685 (2007).

    Article  Google Scholar 

  18. L. Zhao, Y. Liu, J. Yang, Y. Zhao, J. Zheng, H. Bie and X. Liu, Int. J. Hydrogen Energy, 35, 8092 (2010).

    Article  CAS  Google Scholar 

  19. S. C. Kim, S. H. Lee and K. B. Yoon, Int. J. Hydrogen Energy, 35, 6830 (2010).

    Article  CAS  Google Scholar 

  20. I. Simonovski, D. Baraldi, D. Melideo and B. Acosta-Iborra, Int. J. Hydrogen Energy, 40, 12560 (2015).

    Article  CAS  Google Scholar 

  21. J. Zhang, T. S. Fisher, P. V. Ramachandran, J. P. Gore and I. Mudawar, J. Heat Transfer, 127, 1391 (2005).

    Article  CAS  Google Scholar 

  22. J. C. Yang, Int. J. Hydrogen Energy, 34, 6712 (2009).

    Article  CAS  Google Scholar 

  23. C. N. Ranong, S. Maus, J. Hapke, G. Fieg and D. Wenger, Heat Transfer Engineering, 32, 127 (2011).

    Article  CAS  Google Scholar 

  24. F. Olmos and V. I. Manousiouthakis, Int. J. Hydrogen Energy, 38, 3401 (2013).

    Article  CAS  Google Scholar 

  25. E. Ruffio, D. Saury and D. Petit, Int. J. Hydrogen Energy, 39, 12701 (2014).

    Article  CAS  Google Scholar 

  26. P. L. Woodfield, M. Monde and Y. Mitsutake, J. Therm. Sci. Technol., 2, 180 (2007).

    Article  CAS  Google Scholar 

  27. P. L. Woodfield, M. Monde and T. Takano, J. Therm. Sci. Technol., 3, 241 (2008).

    Article  CAS  Google Scholar 

  28. M. Heath, P. L. Woodfield, W. Hall and M. Monde, Exp. Therm Fluid Sci., 54, 151 (2014).

    Article  CAS  Google Scholar 

  29. T. Kuroki, N. Sakoda, K. Shinzato, M. Monde and Y. Takata, Int. J. Hydrogen Energy, 43, 1846 (2018).

    Article  CAS  Google Scholar 

  30. J. Xiao, P. Bénard and R. Chahine, Int. J. Hydrogen Energy, 41, 5531 (2016).

    Article  CAS  Google Scholar 

  31. J. Xiao, X. Wang, X. Zhou, P. Bénard and R. Chahine, Int. J. Hydrogen Energy, 44, 8780 (2019).

    Article  CAS  Google Scholar 

  32. S. Deng, J. Xiao, P. Bénard and R. Chahine, Int. J. Hydrogen Energy, 45, 20525 (2020).

    Article  CAS  Google Scholar 

  33. J. Liu, S. Zheng, Z. Zhang, J. Zheng and Y. Zhao, Int. J. Hydrogen Energy, 45, 9241 (2020).

    Article  CAS  Google Scholar 

  34. R. Caponi, A. M. Ferrario, E. Bocci, G. Valenti and M. Della Pietra, Int.. J. Hydrogen Energy, 46, 18630 (2021).

    Article  CAS  Google Scholar 

  35. K. Reddi, A. Elgowainy and E. Sutherland, Int. J. Hydrogen Energy, 39, 19169 (2014).

    Article  CAS  Google Scholar 

  36. L. Viktorsson, J. T. Heinonen, J. B. Skulason and R. Unnthorsson, Energies, 10, 763 (2017).

    Article  Google Scholar 

  37. A. Mayyas and M. Mann, Int. J. Hydrogen Energy, 44, 9121 (2019).

    Article  CAS  Google Scholar 

  38. J. O. Valderrama, Ind. Eng. Chem. Res., 42, 1603 (2003).

    Article  CAS  Google Scholar 

  39. N. Sakoda, K. Shindo, K. Shinzato, M. Kohno, Y. Takata and M. Fujii, Int. J. Thermophys., 31, 276 (2010).

    Article  CAS  Google Scholar 

  40. K. Nasrifar, Int. J. Hydrogen Energy, 35, 3802 (2010).

    Article  CAS  Google Scholar 

  41. M. C. Galassi, D. Baraldi, B. A. Iborra and P. Moretto, Int. J. Hydrogen Energy, 37, 6886 (2012).

    Article  CAS  Google Scholar 

  42. D. Melideo and D. Baraldi, Int. J. Hydrogen Energy, 40, 735 (2015).

    Article  CAS  Google Scholar 

  43. D. Melideo, D. Baraldi, B. Acosta-Iborra, R. O. Cebola and P. Moretto, Int. J. Hydrogen Energy, 42, 7304 (2017).

    Article  CAS  Google Scholar 

  44. S. Sapre, K. Pareek, R. Rohan and P. K. Singh, Energy Storage, 1, e91 (2019).

    Article  Google Scholar 

  45. B. H. Park, Trans. Korean Hydrogen New Energy Soc., 31, 184 (2020).

    Article  Google Scholar 

  46. P. J. Linstrom and W. G. Mallard, J. Chem. Eng. Data, 46, 1059 (2001).

    Article  CAS  Google Scholar 

  47. B. E. Poling, J. M. Prausnitz and J. P. O’connell, The properties of gases and liquids, McGraw-Hill, New York (2001).

    Google Scholar 

  48. X. Ma, X. Tang, Z. Wang, Q. Wang and D. Gao, Sci. Rep., 10, 1 (2020).

    Article  CAS  Google Scholar 

  49. A. Elgowainy, K. Reddi, E. Sutherland and F. Joseck, Int. J. Hydrogen Energy, 39, 20197 (2014).

    Article  CAS  Google Scholar 

  50. G. E. Klinzing, F. Rizk, R. Marcus and L. Leung, Pneumatic conveying of solids: A theoretical and practical approach, Springer Science & Business Media (2011).

  51. F. W. Dittus, Univ. Calif. Pubs. Eng., 2, 443 (1930).

    Google Scholar 

  52. T. V. Karman, Transactions of the American Society of Mechanical Engineers, 61, 705 (1939).

    Google Scholar 

  53. A. P. Colburn, Trans. Am. Inst. Chem. Engrs., 29, 174 (1993).

    Google Scholar 

  54. S. Moroe, P. Woodfield, K. Kimura, M. Kohno, J. Fukai, M. Fujii, K. Shinzato and Y. Takata, Int. J. Thermophys., 32, 1887 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work; was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20192910100170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Heung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.H., Lee, D.H. Flow analysis and development of a model to simulate transient temperature of hydrogen from pre-cooler to on-board storage tank during hydrogen refueling. Korean J. Chem. Eng. 39, 902–912 (2022). https://doi.org/10.1007/s11814-022-1085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1085-4

Keywords

Navigation