Skip to main content
Log in

Preparation and characterization of room-temperature chemically expanded graphite: Application for cationic dye removal

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A facile, effective, and eco-friendly process was developed for the preparation of chemically expanded graphite (CEG) under ambient conditions using natural flake graphite as raw material, potassium permanganate (KMnO4) as an oxidative intercalating agent, and hydrogen peroxide (H2O2) as the reactive species. The results showed that the CEG had an interconnected and highly porous structure, and some oxygen-containing groups were grafted on the graphite layer by the oxidation-intercalation process. The absence of the graphite diffraction peak at 26° in the XRD pattern of expanded graphite (EG) indicates that the intercalation and expansion processes were complete, and most of the starting graphite layers were converted into the graphene sheets. The sulfuric acid concentration was the most effective parameter on the expansion, and the maximum expansion occurred at a sulfuric acid concentration of 77.5%. The other optimum preparation conditions were obtained at 1.5 g of KMnO4 and 30 mL of H2O2 30%. Under the optimal condition, the developed room-temperature liquid-phase intercalation and expansion processes led to an expansion volume of up to 250 times. The potential application of the as-prepared CEG in environmental clean-up was evaluated by adsorptive removal of methylene blue (MB) from the aqueous solution. The kinetic studies exhibited that the MB adsorption onto the CEG followed a pseudo-second-order kinetic model. Equilibrium data were fitted well with the Langmuir model with a maximum adsorption capacity of 399.08 mg g−1. The findings indicate that the CEG would be potentially applicable in water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. F. Zhao, M. Xiao, S. J. Wang, X. C. Ge and Y. Z. Meng, Compos. Sci. Technol., 67, 2528 (2007).

    Article  CAS  Google Scholar 

  2. D. D. L. Chung, J. Mater. Sci., 51, 554 (2015).

    Article  CAS  Google Scholar 

  3. A. Lorenzetti, B. Dittrich, B. Schartel, M. Roso and M. Modesti, J. Appl. Polym. Sci., 134, 1 (2017).

    Article  CAS  Google Scholar 

  4. T. Peng, B. Liu, X. Gao, L. Luo and H. Sun, Appl. Surf. Sci., 444, 800 (2018).

    Article  CAS  Google Scholar 

  5. S. M. Tichapondwa, S. Tshemese and W. Mhike, Chem. Eng. Trans., 70, 847 (2018).

    Google Scholar 

  6. C. Xu, C. Jiao, R. Yao, A. Lin and W. Jiao, Environ. Pollut., 233, 194 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. M. Zhao and P. Liu, Desalination, 249, 331 (2009).

    Article  CAS  Google Scholar 

  8. Y. Y. Zhou, S. W. Wang, K. N. Kim, J. H. Li and X. P. Yan, Talanta, 69, 970 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. F. Zhang, Q. Zhao, X. Yan, H. Li, P. Zhang, L. Wang, T. Zhou, Y. Li and L. Ding, Food Chem., 197, 943 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. X. Ding, R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, X. Zhang, H. Xiao and L. Wang, Mar. Pollut. Bull., 81, 185 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. B. Tryba, A. W. Morawski, R. J. Kaleńczuk and M. Inagaki, Spill Sci. Technol. Bull., 8, 569 (2003).

    Article  CAS  Google Scholar 

  12. M. Yang, Y. Zhao, X. Sun, X. Shao and D. Li, Desalin. Water Treat., 52, 283 (2014).

    Article  CAS  Google Scholar 

  13. X. Jiao, L. Zhang, Y. Qiu and Y. Yuan, RSC Adv., 7, 38350 (2017).

    Article  CAS  Google Scholar 

  14. L. Jiang, J. Zhang, X. Xu, J. Zhang, H. Liu, Z. Guo, Y. Kang, Y. Li and J. Xu, Appl. Surf. Sci., 357, 2355 (2015).

    Article  CAS  Google Scholar 

  15. C. Xu, W. Yang, W. Liu, H. Sun, C. Jiao and A. Lin, J. Environ. Sci. (China), 67, 14 (2018).

    Article  CAS  Google Scholar 

  16. M. N. Carvallho, K. S. Da Silva, D. C. S. Sales, E. M. P. L. Freire, M. A. M. Sobrinho and M. G. Ghislandi, Water Sci. Technol., 73, 2189 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Kong, J. Yuan, Z. Wang, S. Yao and Z. Chen, Appl. Clay Sci., 46, 358 (2009).

    Article  CAS  Google Scholar 

  18. X. Y. Pang and F. Gong, E-Journal Chem., 5, 802 (2008).

    Article  CAS  Google Scholar 

  19. X. Van Heerden and H. Badenhorst, Carbon, 88, 173 (2015).

    Article  CAS  Google Scholar 

  20. S. Lin, L. Dong, J. Zhang and H. Lu, Chem. Mater., 28, 2138 (2016).

    Article  CAS  Google Scholar 

  21. A. Celzard, J. F. Mareché and G. Furdin, Prog. Mater. Sci., 50, 93 (2005).

    Article  CAS  Google Scholar 

  22. I. M. Afanasov, O. N. Shornikova, D. A. Kirilenko, I. I. Vlasov, L. Zhang, J. Verbeeck, V. V. Avdeev and G. Van Tendeloo, Carbon, 48, 1862 (2010).

    Article  CAS  Google Scholar 

  23. L. Wu, W. Li, P. Li, S. Liao, S. Qiu, M. Chen, Y. Guo, Q. Li, C. Zhu and L. Liu, Small, 10, 1421 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Z. Xue, S. Zhao, Z. Zhao, P. Li and J. Gao, J. Mater. Sci., 51, 4928 (2016).

    Article  CAS  Google Scholar 

  25. P. He, J. Zhou, H. Tang, S. Yang, Z. Liu, X. Xie and G. Ding, J. Colloid Interface Sci., 542, 387 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. L. Dong, Z. Chen, S. Lin, K. Wang, C. Ma and H. Lu, Chem. Mater., 29, 564 (2017).

    Article  CAS  Google Scholar 

  27. Y. Chen, S. Li, R. Luo, X. Lv and X. Wang, New Carbon Mater., 28, 435 (2013).

    Article  CAS  Google Scholar 

  28. J.-C. An, E. J. Lee and I. Hong, J. Ind. Eng. Chem., 47, 56 (2017).

    Article  CAS  Google Scholar 

  29. A. V. Melezhyk and A. G. Tkachev, Nanosyst. Physics, Chem. Math., 5, 294 (2014).

    Google Scholar 

  30. S. Park, J. Kim, K.-J. Jeon and S.-H. Yoon, J. Nanosci. Nanotechnol., 16, 4450 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. N. E. Sorokina, I. V. Nikol’skaya, S. G. Ionov and V. V. Avdeev, Russ. Chem. Bull., 54, 1749 (2005).

    Article  CAS  Google Scholar 

  32. J. Li, H. Da, Q. Liu and S. Liu, Mater. Lett., 60, 3927 (2006).

    Article  CAS  Google Scholar 

  33. Z. Ying, X. Lin, Y. Qi and J. Luo, Mater. Res. Bull., 43, 2677 (2008).

    Article  CAS  Google Scholar 

  34. Y. Lin, Z. H. Huang, X. Yu, W. Shen, Y. Zheng and F. Kang, Electrochim. Acta, 116, 170 (2014).

    Article  CAS  Google Scholar 

  35. W. Zhao, P. H. Tan, J. Liu and A. C. Ferrari, J. Am. Chem. Soc., 133, 5941 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. T. Zhao, W. Jin, Y. Wang, X. Ji, H. Yan, M. Khan, Y. Jiang, A. Dang, H. Li and T. Li, Mater. Lett., 212, 1 (2018).

    Article  CAS  Google Scholar 

  37. A. M. Dimiev, G. Ceriotti, A. Metzger, N. D. Kim and J. M. Tour, ACS Nano, 10, 274 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. J. H. Li, L. L. Feng and Z. X. Jia, Mater. Lett., 60, 746 (2006).

    Article  CAS  Google Scholar 

  39. D. R. Dreyer, S. Park, W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. N. Kumar and V. C. Srivastava, ACS Omega, 3, 10233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I.A. Aksay and R. Car, Nano Lett., 8, 36 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Z. Zhai, X. Pang, R. Lin, S. Sun and M. Weng, Asian J. Chem., 27, 2971 (2015).

    Article  CAS  Google Scholar 

  43. T. Liu, R. Zhang, X. Zhang, K. Liu, Y. Liu and P. Yan, Carbon, 119, 544 (2017).

    Article  CAS  Google Scholar 

  44. C. Rooper, M. Martin, J. Butler, D. Jones, T. Weber, C. Wilson, A. De Robertis, M. Wilkins and M. Zimmermann, Fish. Bull., 110, 317 (2012).

    Google Scholar 

  45. H. M. F. Freundlich, J. Phys. Chem., 57, e470 (1906).

    Google Scholar 

  46. M. J. Temkin and V. Pyzhev, Acta Physicochim. URSS, 12, 217 (1940).

    Google Scholar 

  47. M. Abbasi, E. Safari, M. Baghdadi and M. Janmohammadi, J. Water Process Eng., 40, 101961 (2021).

    Article  Google Scholar 

  48. M. Bagheban, A. Mohammadi, M. Baghdadi, M. Janmohammadi and M. Salimi, J. Environ. Heal. Sci. Eng., 17, 827 (2019).

    Article  CAS  Google Scholar 

  49. J. Yang and K. Qiu, Chem. Eng. J., 165, 209 (2010).

    Article  CAS  Google Scholar 

  50. J. Saini, V. K. Garg and R. K. Gupta, J. Mol. Liq., 250, 413 (2018).

    Article  CAS  Google Scholar 

  51. M. Zhao, Z. Tang and P. Liu, J. Hazard. Mater., 158, 43 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. P. H. Ravelonandro, D. H. Ratianarivo, C. Joannis-Cassan, A. Isambert and M. Raherimandimby, J. Chem. Technol. Biotechnol., 83, 842 (2008).

    Article  CAS  Google Scholar 

  53. Y. Bulut and H. Aydin, Desalination, 194, 259 (2006)

    Article  CAS  Google Scholar 

  54. L. Mouni, L. Belkhiri, J. C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani and H. Remini, Appl. Clay Sci., 153, 38 (2018).

    Article  CAS  Google Scholar 

  55. T. Huang, M. Yan, K. He, Z. Huang, G. Zeng, A. Chen, M. Peng, H. Li, L. Yuan and G. Chen, J. Colloid Interface Sci., 543, 43 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. M. Ghaedi, M. Roosta, A. M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal and V. K. Gupta, Res. Chem. Intermed., 44, 2929 (2018).

    Article  CAS  Google Scholar 

  57. K. C. Bedin, I. P. A. F. Souza, A. L. Cazetta, L. Spessato, A. Ronix and V. C. Almeida, J. Mol. Liq., 269, 132 (2018).

    Article  CAS  Google Scholar 

  58. J. Oliva, A. I. Martinez, A. I. Oliva, C. R. Garcia, A. Martinez-Luevanos, M. Garcia-Lobato, R. Ochoa-Valiente and A. Berlanga, Appl. Surf. Sci., 436, 739 (2018).

    Article  CAS  Google Scholar 

  59. Z. Li, X. Tang, K. Liu, J. Huang, Q. Peng, M. Ao and Z. Huang, J. Environ. Manage., 218, 363 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. N. Chaukura, E. C. Murimba and W. Gwenzi, Environ. Technol. Innov., 8, 132 (2017).

    Article  Google Scholar 

  61. T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu and D. Wu, Colloids Surfaces B Biointerfaces, 90, 197 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li and R. Cheng, J. Hazard. Mater., 268, 191 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. P. Wang, M. Cao, C. Wang, Y. Ao, J. Hou and J. Qian, Appl. Surf. Sci., 290, 116 (2014).

    Article  CAS  Google Scholar 

  64. L. Jiang, Y. Wen, Z. Zhu, X. Liu and W. Shao, Chemosphere, 265, 129169 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant provided by the School of Environment, College of Engineering, University of Tehran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Baghdadi.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardestani, M.M., Mahpishanian, S., Rad, B.F. et al. Preparation and characterization of room-temperature chemically expanded graphite: Application for cationic dye removal. Korean J. Chem. Eng. 39, 1496–1506 (2022). https://doi.org/10.1007/s11814-022-1084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1084-5

Keywords

Navigation