Skip to main content

Advertisement

Log in

Sensitivity analysis for parameter classification of energy balance-integrated single particle model for battery cells

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the increasing use of electric vehicles (EVs), there is a growing interest in the thermal management of EVs. In this study, we first reduced the computational complexity of single particle model (SPM) for the battery cell by introducing a 4th order approximation for Li-ion concentration in the solid phase. In addition, by integrating it with an energy balance, the constructed model can calculate the battery temperature along with the terminal voltage and state of charge. To develop a model compatible with the experimental data requires parameter estimation. However, the estimation accuracy for each parameter depends on its sensitivity. We investigated the influence of 16 parameters on the measured data under general experimental conditions (constant C-rate discharge) through simulations and sensitivity analysis. We classified the radius of the particle, total active surface areas, electrode maximum concentration, and a heat transfer coefficient as dominant parameters. When dominant parameters were estimated using the virtual experimental data, the percent error was smaller than 3.1%. For the parameters with minor influence, the estimation error was large even with the excellent agreement of the experimental data. We confirmed which parameter could be estimated using the C-rate experimental data accurately and which parameter should be estimated with additional experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acell :

total cell surface area exposed to surroundings [m2]

C p :

specific heat capacity of the cell [J/kg·K]

Cs, max, j :

maximum concentration of lithium ions j [mol/m3]

\({\overline {\rm{c}} _j}\) :

volume-averaged Li+ concentration in the solid phase [mol/m3]

Cs, j :

Li+ concentration at solid surface

Ds, j :

electrolyte diffusivity coefficient in the solid phase [m2/s]

\({{\rm{E}}_{{a_{d,j}}}}\) :

activation energy for the solid-phase diffusion coefficient of electrode j [kJ/mol]

\({{\rm{E}}_{{a_{r,j}}}}\) :

activation energy for the reaction rate constant of electrode k [kJ/mol]

F:

faraday constant [96,487C/mol]

j:

Li+ mole flux at solid surface [mol/m2/s]

kj :

rate constant for the electrochemical reaction of electrode j [m2.5/mol0.5·S]

h:

heat transfer coefficient between the cell and the surroundings [W/m2·K]

Q:

rate of heat transfer between the cell and surroundings [W]

\({\overline {\rm{q}} _j}\) :

volume-average Li+ concentration flux in the solid phase [mol/m4]

Sj :

total electroactive area of the electrode j [m2]

Rj :

radius of spherical intercalation of electrode j [m]

R:

ideal gas constant [8.314 J/mol·K]

T:

cell temperature [K]

Tamb :

ambient temperature [K]

Tref :

reference temperature [298.15K]

V:

terminal voltage [V]

φ 1, j :

solid phase potential of electrode j [V]

φ 2,j :

solution phase potential of electrode j [V]

References

  1. M. Guo, G. Sikha and R. E. White, J. Electrochem. Soc., 158(2), A122 (2011).

    Article  CAS  Google Scholar 

  2. V. R. Subramanian, V. D. Diwakar and D. Tapriyal, J. Electrochem. Soc., 152(10), A2002 (2005).

    Article  CAS  Google Scholar 

  3. K. An, P. Barai, K. Smith and P. P. Mukherjee, J. Electrochem. Soc., 161(6), A1058 (2014).

    Article  CAS  Google Scholar 

  4. Y. Choi and H. Kim, Korean Ind. Chem., 18(5), 47 (2015).

    Google Scholar 

  5. B. Wu, J. Power Sources, 243, 544 (2013).

    Article  CAS  Google Scholar 

  6. Y. Ma, IEEE Access, 7, 156136 (2019).

    Article  Google Scholar 

  7. K. Kumaresan, G. Sikha and P. E. White, J. Electrochem. Soc., 155(2), A164 (1993).

    Article  Google Scholar 

  8. A. P. Schmidt, IFAC Symposium Advances in Automotive Control, 43(7), 198 (2010).

    Google Scholar 

  9. M. Farag, H. Sweity, M. Fleckenstein and S. Habibi, J. Power Sources, 360, 618 (2010).

    Article  Google Scholar 

  10. R. Gu, IEEE Transactions on Transportation Electrification, 2(4), 417 (2016).

    Article  Google Scholar 

  11. D. Bernardi, E. Pawlikoski and J. Newman, J. Electrochem. Soc., 132(5), 5 (1985).

    Article  CAS  Google Scholar 

  12. W. Li, Appl. Energy, 269, 115104 (2020).

    Article  CAS  Google Scholar 

  13. L. Zhang, J. Electrochem. Soc., 161(5), A762 (2014).

    Article  CAS  Google Scholar 

  14. M. Chen and G. A. Rincón-Mora, IEEE Transactions on Energy Conversion, 21(2), 504 (2006).

    Article  Google Scholar 

  15. H. Pang, Electrochm. Acta, 307, 474 (2019).

    Article  CAS  Google Scholar 

  16. K. Jiang, J. Power Sources, 451, 1 (2020).

    Google Scholar 

  17. F. Xue, Electrochem. Acta, 53, 6636 (2008).

    Article  CAS  Google Scholar 

  18. H. Wang, ACS NANo, 14, 2575 (2020).

    Article  CAS  Google Scholar 

  19. Z. Mao, M. Farkhondeh, M. Pritzker, M. Fowler and Z. Chen, Electrochim. Acta, 222, 1741 (2016).

    Article  CAS  Google Scholar 

  20. J. K. Park, Principles and applications of lithium secondary batteries, Wiley-VCH Verlag & Co. KGaA, Weinheim (2012).

    Book  Google Scholar 

  21. J. J. Lee, J. Korean Electrochem. Soc., 4(4), 139 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1004217), and by Hyundai Motor Company as Development of Battery Thermal Model considering Battery Aging for Integrated Thermal Management. The present research has been conducted by the Research Grant of Kwangwoon University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C., Oh, SK. & Kim, Y. Sensitivity analysis for parameter classification of energy balance-integrated single particle model for battery cells. Korean J. Chem. Eng. 39, 1396–1411 (2022). https://doi.org/10.1007/s11814-022-1081-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1081-8

Keywords

Navigation