Skip to main content

Advertisement

Log in

Three-step short-time temperature-programmed hydrothermal synthesis of ZSM-5 with high durability for conversion of methanol to propylene

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three-step high temperature programmed hydrothermal preparation of ZSM-5 was investigated by using different crystallization times and temperatures. The synthesized nanostructured catalysts were analyzed by XRD, FESEM, EDX, BET-BJH, FTIR, TPD-NH3 and TGA techniques. According to the obtained characterization results, synthesis of ZSM-5(250-30,300-15,350-5) by short time temperature programmed showed a significant effect on the crystallinity, phase purity, morphology, textural properties and acidity of the nanostructured catalyst. Furthermore, this sample had small crystals with higher intercrystalline porosity and also proper distribution of acid sites. The synthesized catalysts were applied in the methanol to propylene (MTP) process under the operating conditions of T=460 °C and GHSV=10,500 cm3/gcat·h in a fixed-bed reactor. The ZSM-5(250-30,300-15,350-5) catalyst exhibited high selectivity toward propylene (73%) with slow deactivation rate. Also, the possible reaction pathway for pure MFI preparation via three-step short-time temperature-programmed was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Omojola, Chem. Eng. Sci., 251, 117424 (2022).

    Article  CAS  Google Scholar 

  2. J. Tuo, J. Lv, S. Fan, H. Li, N. Yang, S. Cheng, X. Gao and T. Zhao, Fuel, 308, 121995 (2022).

    Article  CAS  Google Scholar 

  3. R. Feng, B. Liu, P. Zhou, X. Yan, X. Hu, M. Zhou and Z. Yan, Appl. Catal. A: Gen., 629, 118422 (2022).

    Article  CAS  Google Scholar 

  4. E. Kianfar, S. Hajimirzaee, S. Mousavian and A. S. Mehr, Microchem. J., 156, 104822 (2020).

    Article  CAS  Google Scholar 

  5. Z. Wan, G. Li, C. Wang, H. Yang and D. Zhang, Catal. Today, 314, 107 (2018).

    Article  CAS  Google Scholar 

  6. P. Sadeghpour and M. Haghighi, Particuology, 19, 69 (2015).

    Article  CAS  Google Scholar 

  7. P. Sadeghpour and M. Haghighi, Asia-Pacific J. Chem. Eng., 13, 2163 (2018).

    Article  CAS  Google Scholar 

  8. K. Khaledi, M. Haghighi and P. Sadeghpour, J. Chem. Technol. Biotechnol., 95, 2447 (2020).

    Article  CAS  Google Scholar 

  9. K. Rahimi, J. Towfighi, M. Sedighi, S. Masoumi and Z. Kooshki, J. Ind. Eng. Chem., 35, 123 (2016).

    Article  CAS  Google Scholar 

  10. H. B. Asfha, N. Kang, A. H. Berta, H. Hwang, K. Kim and Y.-K. Park, Korean J. Chem. Eng., 38, 2047 (2021).

    Article  CAS  Google Scholar 

  11. A. A. Eslami, M. Haghighi and P. Sadeghpour, Powder Technol., 310, 187 (2017).

    Article  CAS  Google Scholar 

  12. H. G. Kim, K. Y. Lee, H.-G. Jang, Y. S. Song and G. Seo, Korean J. Chem. Eng., 27, 1773 (2010).

    Article  CAS  Google Scholar 

  13. S. Aghamohammadi, M. Haghighi, P. Sadeghpour and T. Souri, Comb Chem High Throughput Screen, 24, 509 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. S. Ahmed, J. Porous Mater., 19, 111 (2012).

    Article  CAS  Google Scholar 

  15. Y. Jiao, X. Yang, C. Jiang, C. Tian, Z. Yang and J. Zhang, J. Catal., 332, 70 (2015).

    Article  CAS  Google Scholar 

  16. B. Jiang, X. Feng, L. Yan, Y. Jiang, Z. Liao, J. Wang and Y. Yang, Ind. Eng. Chem. Res., 53, 4623 (2014).

    Article  CAS  Google Scholar 

  17. P. Sadeghpour, M. Haghighi and A. Ebrahimi, Ultrason Sonochem, 72, 105416 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. H.-T. Lee and H.-K. Rhee, Korean J. Chem. Eng., 19, 574 (2002).

    Article  CAS  Google Scholar 

  19. T. Zhao, Y. Wang, C. Sun, A. Zhao, C. Wang, X. Zhang, J. Zhao, Z. Wang, J. Lu, S. Wu and W. Liu, Micropor. Mesopor. Mater., 292, 109731 (2020).

    Article  CAS  Google Scholar 

  20. M. Li, Y. Huang, C. Ju and Y. Fang, Micropor. Mesopor. Mater., 244, 7 (2017).

    Article  CAS  Google Scholar 

  21. F. Meng, Y. Wang, S. Wang, X. Wang and S. Wang, Comptes Rendus Chimie, 20, 385 (2017).

    Article  CAS  Google Scholar 

  22. B. Mohammadkhani, M. Haghighi and P. Sadeghpour, RSC Adv., 6, 25460 (2016).

    Article  CAS  Google Scholar 

  23. A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi and Y. Z. Feng, Appl. Catal. A: Gen., 364, 48 (2009).

    Article  CAS  Google Scholar 

  24. P. Sadeghpour and M. Haghighi, Adv. Powder Technol., 29, 1175 (2018).

    Article  CAS  Google Scholar 

  25. Y. Zhai, Y. Shang, L. Zhang, X. Meng, Y. Gong, L. Zheng, J. Zhang and P. Liu, Micropor. Mesopor. Mater., 326, 111374 (2021).

    Article  CAS  Google Scholar 

  26. K. Chung, K. Kim and G. Seo, Korean J. Chem. Eng., 9, 144 (1992).

    Article  CAS  Google Scholar 

  27. Y. Jiao, C. Jiang, Z. Yang, J. Liu and J. Zhang, Micropor. Mesopor. Mater., 181, 201 (2013).

    Article  CAS  Google Scholar 

  28. P. Sadeghpour, M. Haghighi and M. Esmaeili, Comb Chem High Throughput Screen, 24, 490 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Z.-Z. Wang, W.-F. Han and H.-Z. Liu, Catal. Commun., 84, 120 (2016).

    Article  CAS  Google Scholar 

  30. C. S. Cundy and P. A. Cox, Micropor. Mesopor. Mater., 82, 1 (2005).

    Article  CAS  Google Scholar 

  31. A. Amoozegar, M. Haghighi and S. Aghamohammadi, RSC Adv., 6, 51024 (2016).

    Article  CAS  Google Scholar 

  32. D. Oleksiak Matthew and D. Rimer Jeffrey, Rev. Chem. Eng., 30, 1 (2014).

    Article  CAS  Google Scholar 

  33. M. Dargahi, H. Kazemian, M. Soltanieh, S. Rohani and M. Hosseinpour, Particuology, 9, 452 (2011).

    Article  CAS  Google Scholar 

  34. E. Aghaei and M. Haghighi, Powder Technol., 269, 358 (2015).

    Article  CAS  Google Scholar 

  35. Z. Xu, Y. Wang, J. Zhuang, Y. Li and L. Jia, Mol. Catal., 517, 111900 (2022).

    Article  CAS  Google Scholar 

  36. S. S. Mali, P. S. Shinde, C. A. Betty, P. N. Bhosale, W. J. Lee and P. S. Patil, Prog. Photovoltaics: Res. Appl., 22, 525 (2014).

    Article  CAS  Google Scholar 

  37. L. Polak, T. P. N. Veeken, J. Houtkamp, M. J. Slaman, S. M. Kars, J. H. Rector and R. J. Wijngaarden, Thin Solid Films, 603, 413 (2016).

    Article  CAS  Google Scholar 

  38. P. Wang, D. Yang, J. Hu, J. A. Xu and G. Lu, Catal. Today, 212, 62.e1 (2013).

    CAS  Google Scholar 

  39. W. Wang, L. Li, S. Tan, K. Wu, G. Zhu, Y. Liu, Y. Xu and Y. Yang, Fuel, 179, 1 (2016).

    Article  CAS  Google Scholar 

  40. F. Yaripour, Z. Shariatinia, S. Sahebdelfar and A. Irandoukht, Micropor. Mesopor. Mater., 203, 41 (2015).

    Article  CAS  Google Scholar 

  41. S. Hassanpour, M. Taghizadeh and F. Yaripour, Ind. Eng. Chem. Res., 49, 4063 (2010).

    Article  CAS  Google Scholar 

  42. A. Xu, H. Ma, H. Zhang, D. Weiyong and D. Fang, Polish J. Chem. Technol., 15, 95 (2013).

    Article  CAS  Google Scholar 

  43. A. Javdani, J. Ahmadpour and F. Yaripour, Micropor. Mesopor. Mater., 284, 443 (2019).

    Article  CAS  Google Scholar 

  44. L.-w. Zhang, H.-k. Zhang, Z.-q. Chen, S.-y. Liu and J. Ren, J. Fuel Chem. Technol., 47, 1468 (2019).

    Article  CAS  Google Scholar 

  45. Y. Zang, X. Dong and C. Wang, Chem. Eng. J., 313, 1583 (2017).

    Article  CAS  Google Scholar 

  46. L. Zeng, F. Liu, T. Zhao and J. Cao, ACS Omega, 6, 19067 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Shokrani and M. Haghighi, Appl. Catal. B: Environ., 271, 118940 (2020).

    Article  CAS  Google Scholar 

  48. J. Valecillos, E. Epelde, J. Albo, A. T. Aguayo, J. Bilbao and P. Castaño, Catal. Today, 348, 243 (2020).

    Article  CAS  Google Scholar 

  49. Y. Shang, W. Wang, Y. Zhai, Y. Song, X. Zhao, T. Ma, J. Wei and Y. Gong, Micropor. Mesopor. Mater., 276, 173 (2019).

    Article  CAS  Google Scholar 

  50. A. Xu, H. Ma, H. Zhang, W. Ying and D. Fang, World Acad. Sci., Eng. Technol., 7, 4 (2013).

    Google Scholar 

  51. Y. Jin, S. Asaoka, S. Zhang, P. Li and S. Zhao, Fuel Process. Technol., 115, 34 (2013).

    Article  CAS  Google Scholar 

  52. H.-J. Chae, Y.-H. Song, K.-E. Jeong, C.-U. Kim and S.-Y. Jeong, J. Phys. Chem. Solids, 71, 600 (2010).

    Article  CAS  Google Scholar 

  53. N. Hadi, R. Alizadeh and A. Niaei, J. Ind. Eng. Chem., 54, 82 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Sahand University of Technology for the financial support of the research as well as Iran Nanotechnology Initiative Council for complementary financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghpour, P., Haghighi, M. Three-step short-time temperature-programmed hydrothermal synthesis of ZSM-5 with high durability for conversion of methanol to propylene. Korean J. Chem. Eng. 39, 1194–1206 (2022). https://doi.org/10.1007/s11814-022-1077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1077-4

Keywords

Navigation