Skip to main content
Log in

Investigation on flow characteristic and reaction process inside an EVA autoclave reactor using CFD modeling combined with polymerization kinetics

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

EVA is an important high-performance resin material obtained by the copolymerization of ethylene and vinyl acetate. In the present study, a comprehensive computational fluid dynamics (CFD) model was established to study the EVA free radical copolymerization process. The polymerization kinetic model was combined with the CFD model. The EVA copolymerization reaction mechanism was verified by comparing the simulation results with the experimental results. Detailed information of the flow field inside the industrial EVA autoclave reactor was obtained. With the increase of the impeller speed, both the axial and radial flows inside the autoclave reactor were enhanced. The high impeller speed improved the fluid mixing and the homogeneity of temperature distribution. The increase of the impeller speed improved the initiator dispersion near the inlets, thereby increasing the efficiency of the initiator. The influence of operating conditions on monomer conversion and specific initiator consumption per 1% of the monomer reacted was investigated. The simulation results give deep insight into the free radical copolymerization process inside the autoclave reactor and supply the guidelines for developing an industrial autoclave reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

modifier

D m,i :

diffusion coefficient of component m [m2·s−1]

Ea :

activation energy [J·mol−1·K−1]

e:

total energy [J·kg−1]

f:

apparent initiator efficiency factor

h:

specific enthalpy [J·kg−1]

Jm,i :

diffusion flux of component m [kg·m2·s−1]

k:

turbulent kinetic energy [J·kg−1·s−1]

k0 :

frequency factor [s−1 or L·mol−1·s−1]

kd :

initiator decomposition rate coefficient [L·s−1]

keff :

effective thermal conductivity [W·m−1·K−1]

kin :

initiation rate coefficient [L·mol−1·s−1]

kp :

propagation rate coefficient [L·mol−1·s−1]

kta :

chain transfer to modifier rate coefficient [L·mol−1·s−1]

ktc :

termination by combination rate coefficient [L·mol−1·s−1]

ktd :

termination by disproportionation rate coefficient [L·mol−1·s−1]

ktm :

chain transfer to monomer rate coefficient [L·mol−1·s−1]

ktp :

chain transfer to polymer rate coefficient [L·mol−1·s−1]

kβ :

β-scission of internal radicals rate coefficient [L·mol−1·s−1]

MT :

stirring torque [N·m]

N:

impeller speed [rpm]

PV :

impeller power consumption per unit volume [W·m−3]

p:

pressure [Pa]

r:

reaction rate [mol·L−1·s−1]

Sh :

heat source term due to polymerization [J·m−3·s−1]

Si :

reaction source of component i [J·m−3·s−1]

Sct :

Schmidt number

T:

temperature [K]

ui :

velocity components [m·s−1]

V:

reactor volume [m3]

WI :

the specific initiator consumption per 1% of the monomer reacted [kg·h−1]

Ym :

mass fraction of component m

∆T:

the outlet temperature rise [K]

∆V:

activation volume [cm3·mol−1]

δ ij :

Kronecker delta

ε :

Turbulent kinetic energy dissipation rate [J·kg−1·s−1]

λ i :

moment of the live polymer chains [mol·L−1]

μ i :

moment of the dead polymer chains [mol·L−1]

μ :

dynamic viscosity [Pa·s]

μ t :

turbulent viscosity [Pa·s]

ρ :

mixture density [kg·m−3]

τ ij :

stress tensor [Pa]

d:

initiation decomposition

in:

initiator

m:

chain length

n:

chain length

p:

propagation

ta:

chain transfer to modifier

tc:

termination by combination

td:

termination by disproportionation

tm:

chain transfer to monomer

tp:

chain transfer to polymer

z:

chain length

β :

β-scission of internal radicals

References

  1. S. P. Tambe, S. K. Singh, M. Patri and D. Kumar, Prog. Org. Coat., 62, 382 (2008).

    Article  CAS  Google Scholar 

  2. A. Zarrouki, E. Espinosa, C. Boisson and V. Monteil, Macromolecules, 50, 3516 (2017).

    Article  CAS  Google Scholar 

  3. M. Ghiass and R. A. Hutchinson, Polym. React. Eng., 11, 989 (2003).

    Article  CAS  Google Scholar 

  4. G. J. Wells and W. H. Ray, AIChE J., 51, 3205 (2005).

    Article  CAS  Google Scholar 

  5. P. Pladis and C. A. Kiparissides, Ind. Eng. Chem. Res., 58, 13093 (2019).

    Article  CAS  Google Scholar 

  6. C. Kiparissides, G. Verros and J. A. Macgregor, J. Macromol. Sci., Polym. Rev., 33, 437 (1993).

    Article  Google Scholar 

  7. Y. Lee, K. Jeon, J. Cho, J. Na, J. Park, I. Jung, J. Park, M. J. Park and W. B. Lee, Ind. Eng. Chem. Res., 58, 16459 (2019).

    Article  CAS  Google Scholar 

  8. H. Patel, R. Dhib and F. Ein-Mozaffari, Chem. Eng. Technol., 33, 258 (2010).

    Article  CAS  Google Scholar 

  9. S. F. Roudsari, F. Ein-Mozaffari and R. Dhib, Chem. Eng. J., 219, 429 (2013).

    Article  Google Scholar 

  10. C. Xu, J. Wang, X. Gu and L. Feng, Chem. Eng. Commun., 205, 857 (2018).

    Article  CAS  Google Scholar 

  11. G. J. Wells and W. H. Ray, Macromol. Mater. Eng., 290, 319 (2005).

    Article  CAS  Google Scholar 

  12. G. Luft, M. Jabbari and M. Dorn, Angew. Makromol. Chem., 238, 87 (1996).

    Article  CAS  Google Scholar 

  13. I. L. Chien, T. W. Kan and B.-S. Chen, Comput. Chem. Eng., 31, 233 (2007).

    Article  CAS  Google Scholar 

  14. N. Jacob and R. Dhib, J. Ind. Eng. Chem., 18, 1781 (2012).

    Article  CAS  Google Scholar 

  15. C. Sarmoria, A. Brandolin, A. Lopez-Rodriguez, K. S. Whiteley and B. D. Fernandez, Polym. Eng. Sci., 40, 1480 (2000).

    Article  CAS  Google Scholar 

  16. J. Cui, L. Ni, J. Jiang, Y. Pan, H. Wu and Q. Chen, Org. Process Res. Dev., 23, 389 (2019).

    Article  CAS  Google Scholar 

  17. N. K. Read, S. X. Zhang and W. H. Ray, AIChE J., 43, 104 (1997).

    Article  CAS  Google Scholar 

  18. G. D. Wehinger, T. Eppinger and M. Kraume, Chem. Eng. Sci., 122, 197 (2015).

    Article  CAS  Google Scholar 

  19. Y. Zhuang, X. Gao, Y. Zhu and Z. Luo, Powder Technol., 221, 419 (2012).

    Article  CAS  Google Scholar 

  20. T. Shin, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput. Fluids, 24, 227 (1995)

    Article  Google Scholar 

  21. P. Becker, M. Buback and J. Sandmann, Macromol. Chem. Phys., 203, 2113 (2002).

    Article  CAS  Google Scholar 

  22. T. Xie and A. Hamielec, Macromol. Theory Simul., 2, 777 (1993).

    Article  CAS  Google Scholar 

  23. T. Xie and A. Hamielec, Macromol. Theory Simul., 2, 455 (1993).

    Article  CAS  Google Scholar 

  24. T. Xie and A. Hamielec, Macromol. Theory Simul., 2, 421 (1993).

    Article  CAS  Google Scholar 

  25. A. Hamielec, J. MacGregor and A. Penlidis, Makromolekulare Chemie. Macromol. Symp., 10–11, 521 (1987).

    Article  Google Scholar 

  26. J. Soares, Chem. Eng. Sci., 56, 4131 (2001).

    Article  CAS  Google Scholar 

  27. P. Pladis and C. Kiparissides, Chem. Eng. Sci., 53, 3315 (1998).

    Article  CAS  Google Scholar 

  28. H. Hulburt and S. Katz, Chem. Eng. Sci., 19, 555 (1964).

    Article  CAS  Google Scholar 

  29. S. Roudsari, G. Turcotte, R. Dhib and F. Ein-Mozaffari, Comput. Chem. Eng., 45, 124 (2012).

    Article  Google Scholar 

  30. S. Zhang and W. Ray, AIChE J., 43, 1265 (1997).

    Article  CAS  Google Scholar 

  31. C. He, J. Wang, R. Wang and X. Zhang, Renew. Energ., 168, 1177 (2021).

    Article  Google Scholar 

  32. S. Erdogan, M. Alpbaz and A. R. Karagöz, Chem. Eng. J., 86, 259 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Dong.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1075_MOESM1_ESM.pdf

Investigation on flow characteristic and reaction process inside an EVA autoclave reactor using CFD modeling combined with polymerization kinetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, C., Wang, S. et al. Investigation on flow characteristic and reaction process inside an EVA autoclave reactor using CFD modeling combined with polymerization kinetics. Korean J. Chem. Eng. 39, 1384–1395 (2022). https://doi.org/10.1007/s11814-022-1075-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1075-6

Keywords

Navigation